Third tutorial¶
Crystalline silicon.¶
This tutorial aims at showing you how to get the following physical properties, for an insulator:
- the total energy
- the lattice parameter
- the band structure (actually, the Kohn-Sham band structure)
You will learn about the use of k-points, as well as the smearing of the plane-wave kinetic energy cut-off.
Important
All the necessary input files to run the examples can be found in the ~abinit/tests/ directory where ~abinit is the absolute path of the abinit top-level directory.
To execute the tutorials, you are supposed to create a working directory (Work*
) and
copy there the input files and the files file of the lesson.
The files file ending with _x (e.g. tbase1_x.files) must be edited every time you start to use a new input file. You will discover more about the files file in section 1.1 of the help file.
To make things easier, we suggest to define some handy environment variables by executing the following lines in the terminal:
export ABI_HOME=Replace_with_the_absolute_path_to_the_abinit_top_level_dir export ABI_TESTS=$ABI_HOME/tests/ export ABI_TUTORIAL=$ABI_TESTS/tutorial/ # Files for base1-2-3-4, GW ... export ABI_TUTORESPFN=$ABI_TESTS/tutorespfn/ # Files specific to DFPT tutorials. export ABI_TUTOPARAL=$ABI_TESTS/tutoparal/ # Tutorials about parallel version export ABI_TUTOPLUGS=$ABI_TESTS/tutoplugs/ # Examples using external libraries. export ABI_PSPDIR=$ABI_TESTS/Psps_for_tests/ # Pseudos used in examples. export PATH=$ABI_HOME/src/98_main/:$PATH
The examples in this tutorial will use these shell variables so that one can easily copy and paste the code snippets into the terminal (remember to set ABI_HOME first!)
The last line adds the directory containing the executables to your PATH so that one can invoke the code by simply typing abinit in the terminal instead of providing the absolute path.
Finally, to run the examples in parallel with e.g. 2 MPI processes, use mpirun (mpiexec) and the syntax:
mpirun -n 2 abinit < files_file > log 2> err
The standard output of the application is redirected to log
while err
collects the standard error
(runtime error messages, if any, are written here).
This tutorial should take about 1 hour.
Visualisation tools are NOT covered in this tutorial. Powerful visualisation procedures have been developed in the Abipy context, relying on matplotlib. See the README of Abipy and the Abipy tutorials.
Computing the total energy of silicon at a fixed number of k-points¶
Before beginning, you might consider working in a different subdirectory, as for tutorial 1 or 2. Why not Work3?
The file tbase3_x.files lists the file names and root names. You can copy it in the Work3 directory and change it as you did in the first and second tutorials. You can also copy the file tbase3_1.in inside the Work3 directory with:
cd $ABI_TUTORIAL/Input mkdir Work3 cd Work3 cp ../tbase3_x.files . # You will need to edit this file. cp ../tbase3_1.in .
This is your input file:
# Crystalline silicon : computation of the total energy # #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # In tutorials 1 and 2, these primitive vectors 0.5 0.0 0.5 # (to be scaled by acell) were 1 0 0 0 1 0 0 0 1 0.5 0.5 0.0 # that is, the default. #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. # Note the use of fractions (remember the limited # interpreter capabilities of ABINIT) #Definition of the planewave basis set ecut 8.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grid kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry ngkpt 2 2 2 # This is a 2x2x2 grid based on the primitive vectors nshiftk 4 # of the reciprocal space (that form a BCC lattice !), # repeated four times, with different shifts : shiftk 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 # In cartesian coordinates, this grid is simple cubic, and # actually corresponds to the # so-called 4x4x4 Monkhorst-Pack grid #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_1.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% psp_files = 14si.pspnc #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = Crystalline silicon: computation of the total energy #%%<END TEST_INFO>
You should edit it, read it carefully, have a look at the following new input variables and their explanation:
- rprim
- xred (used instead of xcart)
- kptopt, ngkpt, nshiftk, shiftk, kptrlatt (not easy, take your time!)
- diemac (a different value is used for this variable compare to previous calculations where isolated molecules were considered).
Note also the following: you will work at fixed ecut (8Ha). It is implicit that in real life, you should do a convergence test with respect to ecut. Here, a suitable ecut is given to you. It will result in a lattice parameter that is 0.2% off of the experimental value.
When you have read the input file, you can run the code, as usual:
abinit < tbase3_x.files > log 2> err &
Then, read the output file, and note the total energy:
etotal -8.8662238960E+00
Starting the convergence study with respect to k-points¶
There is, of course, a convergence study associated with the sampling of the Brillouin zone. You should examine different grids, of increasing resolution. You might try the following series of grids:
ngkpt1 2 2 2 ngkpt2 4 4 4 ngkpt3 6 6 6 ngkpt4 8 8 8
However, the associated number of k-points in the irreducible Brillouin zone grows very fast. It is
nkpt1 2 nkpt2 10 nkpt3 28 nkpt4 60
Abinit computes automatically this number of k-points, from the definition of the grid and the symmetries. You might nevertheless define an input nkpt value in the input file, in which case the code will compare its computed value (from the grid) with this input value.
We take this opportunity to examine the behaviour of abinit when a problem is detected. Let us suppose that with ngkpt1 4 4 4, one mentions nkpt1 2. The input file tbase3_2.in is an example:
# Crystalline silicon : computation of the total energy # # This input file will NOT work : nkpt does not agree # with ngkpt and shiftk. The error message will be given # in the "log" file. #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 8.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grid nkpt 2 # Number of k points (It does not agree with ngkpt and shiftk) kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry ngkpt 4 4 4 # This is a 4x4x4 FCC grid, based on the primitive vectors nshiftk 4 # of the reciprocal space. For a FCC real space lattice, # like the present one, it actually corresponds to the # so-called 8x8x8 Monkhorst-Pack grid. shiftk 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% expected_failure = yes #%% [files] #%% files_to_test = #%% tbase3_2.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% psp_files = 14si.pspnc #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon : computation of the total energy #%% #%% This input file will NOT work : nkpt does not agree #%% with ngkpt and shiftk. The error message will be given #%% in the "log" file. #%%<END TEST_INFO>
Do not forget to change tbase3_x.files, if you are using that file name. The message that you get a few dozen of lines before the end of the log file is:
--- !BUG message: | The argument nkpt= 2, does not match the number of k-points generated by kptopt, kptrlatt, shiftk, and the eventual symmetries, that is, nkpt= 10. However, note that it might be due to the user, if nkpt is explicitely defined in the input file. In this case, please check your input file. src_file: getkgrid.F90 src_line: 415 ... Action : contact ABINIT group.
This is a typical abinit error message. It states what is the problem that causes the stop of the code, then suggests that it might be due to an error in the input file, namely, an erroneous value of nkpt. The expected value, nkpt 10 is mentioned before the notice that the input file might be erroneous. Then, the file at which the problem occurred is mentioned, as well as the number of the line in that file.
As the computation of nkpt for specific grids of k-points is not an easy task, while the even more important selection of specific economical grids (the best ratio between the accuracy of the integration in the Brillouin zone and the number of k-points) is more difficult, some help to the user is provided by ABINIT.
The code is able to examine automatically different k-point grids, and to propose the best grids for integration. This is described in the abinit help file, see the input variable prtkpt, and the associated characterisation of the integral accuracy, described in kptrlen.
Tip
The generation of lists of k-point sets is done in different test cases, in $ABI_TESTS/v2
.
You can directly have a look at the output files in $ABI_TESTS/v2/Refs
,
the output files for the tests 61 to 73.
When one begins the study of a new material, it is strongly advised to examine first the list of k-points grids, and select (at least) three efficient ones, for the k-point convergence study.
Do not forget that the CPU time will be linearly proportional to the number of k-points to be treated: using 10 k-points will take five more times than using 2 k-points. Even for a similar accuracy of the Brillouin zone integration (about the same value of kptrlen), it might be easy to generate a grid that will fold to 10 k-points in the irreducible Brillouin zone, as well as one that will fold to 2 k-points in the irreducible Brillouin zone. The latter is clearly to be preferred!
Convergence study with respect to k-points¶
In order to understand k-point grids, you should read [Monkhorst1976]. Well, maybe not immediately. In the meantime, you can try the above-mentioned convergence study.
The input file tbase3_3.in is an example, while $ABI_TUTORIAL/Refs/tbase3_3.out is a reference output file.
cd $ABI_TUTORIAL/Work3 cp ../tbase3_3.in .
# Crystalline silicon : computation of the total energy # Convergence with respect to the number of k points. ndtset 4 #Definition of the k-point grids kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry nshiftk 4 shiftk 0.5 0.5 0.5 # These shifts will be the same for all grids 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 ngkpt1 2 2 2 # Definition of the different grids ngkpt2 4 4 4 ngkpt3 6 6 6 ngkpt4 8 8 8 getwfk -1 # This is to speed up the calculation, by restarting # from previous wavefunctions, transferred from the old # to the new k-points. #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 8.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_3.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% psp_files = 14si.pspnc #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon : computation of the total energy #%% Convergence with respect to the number of k points. #%%<END TEST_INFO>
.Version 8.0.3 of ABINIT .(MPI version, prepared for a x86_64_linux_gnu5.3 computer) .Copyright (C) 1998-2018 ABINIT group . ABINIT comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Mon 4 Apr 2016. - ( at 09h40 ) - input file -> tbase3_3.in - output file -> tbase3_3.out - root for input files -> tbase3_3i - root for output files -> tbase3_3o DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 1. intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 2 mpw = 289 nfft = 8000 nkpt = 2 ================================================================================ P This job should need less than 2.905 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.046 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 2. intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 10 mpw = 293 nfft = 8000 nkpt = 10 ================================================================================ P This job should need less than 3.119 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.226 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 3. intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 28 mpw = 295 nfft = 8000 nkpt = 28 ================================================================================ P This job should need less than 3.601 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.632 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ DATASET 4 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 4. intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 60 mpw = 297 nfft = 8000 nkpt = 60 ================================================================================ P This job should need less than 4.465 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 1.362 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ -------------------------------------------------------------------------------- ------------- Echo of variables that govern the present computation ------------ -------------------------------------------------------------------------------- - - outvars: echo of selected default values - accesswff0 = 0 , fftalg0 =312 , wfoptalg0 = 0 - - outvars: echo of global parameters not present in the input file - max_nthreads = 0 - -outvars: echo values of preprocessed input variables -------- acell 1.0180000000E+01 1.0180000000E+01 1.0180000000E+01 Bohr amu 2.80855000E+01 diemac 1.20000000E+01 ecut 8.00000000E+00 Hartree - fftalg 312 getwfk -1 jdtset 1 2 3 4 kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.00000000E+00 kpt2 -1.25000000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 1.25000000E-01 -1.25000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 0.00000000E+00 0.00000000E+00 kpt3 -8.33333333E-02 -1.66666667E-01 0.00000000E+00 -8.33333333E-02 -3.33333333E-01 0.00000000E+00 -1.66666667E-01 -2.50000000E-01 0.00000000E+00 -8.33333333E-02 -2.50000000E-01 8.33333333E-02 -8.33333333E-02 5.00000000E-01 0.00000000E+00 -1.66666667E-01 -4.16666667E-01 0.00000000E+00 -8.33333333E-02 -4.16666667E-01 8.33333333E-02 -2.50000000E-01 -3.33333333E-01 0.00000000E+00 -1.66666667E-01 -3.33333333E-01 8.33333333E-02 -8.33333333E-02 -3.33333333E-01 1.66666667E-01 -8.33333333E-02 3.33333333E-01 0.00000000E+00 -1.66666667E-01 4.16666667E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 0.00000000E+00 -1.66666667E-01 5.00000000E-01 8.33333333E-02 -3.33333333E-01 -4.16666667E-01 0.00000000E+00 -2.50000000E-01 -4.16666667E-01 8.33333333E-02 -1.66666667E-01 -4.16666667E-01 1.66666667E-01 -8.33333333E-02 -4.16666667E-01 2.50000000E-01 -8.33333333E-02 1.66666667E-01 0.00000000E+00 -1.66666667E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.33333333E-01 0.00000000E+00 -3.33333333E-01 4.16666667E-01 0.00000000E+00 -4.16666667E-01 5.00000000E-01 0.00000000E+00 -3.33333333E-01 5.00000000E-01 8.33333333E-02 -2.50000000E-01 5.00000000E-01 1.66666667E-01 -8.33333333E-02 0.00000000E+00 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.00000000E+00 -4.16666667E-01 0.00000000E+00 0.00000000E+00 kpt4 -6.25000000E-02 -1.25000000E-01 0.00000000E+00 -6.25000000E-02 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 -1.87500000E-01 0.00000000E+00 -6.25000000E-02 -1.87500000E-01 6.25000000E-02 -6.25000000E-02 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.12500000E-01 0.00000000E+00 -6.25000000E-02 -3.12500000E-01 6.25000000E-02 -1.87500000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 -2.50000000E-01 6.25000000E-02 -6.25000000E-02 -2.50000000E-01 1.25000000E-01 -6.25000000E-02 5.00000000E-01 0.00000000E+00 -1.25000000E-01 -4.37500000E-01 0.00000000E+00 -6.25000000E-02 -4.37500000E-01 6.25000000E-02 -1.87500000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 6.25000000E-02 -6.25000000E-02 -3.75000000E-01 1.25000000E-01 -2.50000000E-01 -3.12500000E-01 0.00000000E+00 -1.87500000E-01 -3.12500000E-01 6.25000000E-02 -1.25000000E-01 -3.12500000E-01 1.25000000E-01 -6.25000000E-02 -3.12500000E-01 1.87500000E-01 -6.25000000E-02 3.75000000E-01 0.00000000E+00 -1.25000000E-01 4.37500000E-01 0.00000000E+00 -1.87500000E-01 5.00000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 6.25000000E-02 -2.50000000E-01 -4.37500000E-01 0.00000000E+00 -1.87500000E-01 -4.37500000E-01 6.25000000E-02 -1.25000000E-01 -4.37500000E-01 1.25000000E-01 -6.25000000E-02 -4.37500000E-01 1.87500000E-01 -3.12500000E-01 -3.75000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 6.25000000E-02 -1.87500000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 -3.75000000E-01 1.87500000E-01 -6.25000000E-02 -3.75000000E-01 2.50000000E-01 -6.25000000E-02 2.50000000E-01 0.00000000E+00 -1.25000000E-01 3.12500000E-01 0.00000000E+00 -1.87500000E-01 3.75000000E-01 0.00000000E+00 -2.50000000E-01 4.37500000E-01 0.00000000E+00 -3.12500000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 6.25000000E-02 -1.87500000E-01 5.00000000E-01 1.25000000E-01 -3.75000000E-01 -4.37500000E-01 0.00000000E+00 -3.12500000E-01 -4.37500000E-01 6.25000000E-02 -2.50000000E-01 -4.37500000E-01 1.25000000E-01 -1.87500000E-01 -4.37500000E-01 1.87500000E-01 -1.25000000E-01 -4.37500000E-01 2.50000000E-01 -6.25000000E-02 -4.37500000E-01 3.12500000E-01 -6.25000000E-02 1.25000000E-01 0.00000000E+00 -1.25000000E-01 1.87500000E-01 0.00000000E+00 -1.87500000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.12500000E-01 0.00000000E+00 outvar_i_n : Printing only first 50 k-points. kptrlatt1 2 -2 2 -2 2 2 -2 -2 2 kptrlatt2 4 -4 4 -4 4 4 -4 -4 4 kptrlatt3 6 -6 6 -6 6 6 -6 -6 6 kptrlatt4 8 -8 8 -8 8 8 -8 -8 8 kptrlen1 2.03600000E+01 kptrlen2 4.07200000E+01 kptrlen3 6.10800000E+01 kptrlen4 8.14400000E+01 P mkmem1 2 P mkmem2 10 P mkmem3 28 P mkmem4 60 natom 2 nband1 5 nband2 5 nband3 5 nband4 5 ndtset 4 ngfft 20 20 20 nkpt1 2 nkpt2 10 nkpt3 28 nkpt4 60 nstep 10 nsym 48 ntypat 1 occ1 2.000000 2.000000 2.000000 2.000000 0.000000 occ2 2.000000 2.000000 2.000000 2.000000 0.000000 occ3 2.000000 2.000000 2.000000 2.000000 0.000000 occ4 2.000000 2.000000 2.000000 2.000000 0.000000 rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01 spgroup 227 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 -1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0 0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1 0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1 0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0 0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1 0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0 -1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1 0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0 tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 toldfe 1.00000000E-06 Hartree typat 1 1 wtk1 0.75000 0.25000 wtk2 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375 0.09375 0.18750 0.03125 0.03125 wtk3 0.02778 0.02778 0.02778 0.05556 0.02778 0.02778 0.05556 0.02778 0.05556 0.05556 0.02778 0.02778 0.02778 0.05556 0.02778 0.05556 0.05556 0.05556 0.02778 0.02778 0.02778 0.02778 0.02778 0.05556 0.05556 0.00926 0.00926 0.00926 wtk4 0.01172 0.01172 0.01172 0.02344 0.01172 0.01172 0.02344 0.01172 0.02344 0.02344 0.01172 0.01172 0.02344 0.01172 0.02344 0.02344 0.01172 0.02344 0.02344 0.02344 0.01172 0.01172 0.01172 0.02344 0.01172 0.02344 0.02344 0.02344 0.01172 0.02344 0.02344 0.02344 0.02344 0.01172 0.01172 0.01172 0.01172 0.01172 0.02344 0.02344 0.01172 0.02344 0.02344 0.02344 0.02344 0.02344 0.01172 0.01172 0.01172 0.01172 outvars : Printing only first 50 k-points. xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.3467559959E+00 1.3467559959E+00 1.3467559959E+00 xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5450000000E+00 2.5450000000E+00 2.5450000000E+00 xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01 znucl 14.00000 ================================================================================ chkinp: Checking input parameters for consistency, jdtset= 1. chkinp: Checking input parameters for consistency, jdtset= 2. chkinp: Checking input parameters for consistency, jdtset= 3. chkinp: Checking input parameters for consistency, jdtset= 4. ================================================================================ == DATASET 1 ================================================================== - nproc = 1 Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.0900000 5.0900000 G(1)= -0.0982318 0.0982318 0.0982318 R(2)= 5.0900000 0.0000000 5.0900000 G(2)= 0.0982318 -0.0982318 0.0982318 R(3)= 5.0900000 5.0900000 0.0000000 G(3)= 0.0982318 0.0982318 -0.0982318 Unit cell volume ucvol= 2.6374446E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.000 => boxcut(ratio)= 2.18216 --- Pseudopotential description ------------------------------------------------ - pspini: atom type 1 psp file is /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/14si.pspnc - pspatm: opening atomic psp file /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/14si.pspnc - Troullier-Martins psp for element Si Thu Oct 27 17:31:21 EDT 1994 - 14.00000 4.00000 940714 znucl, zion, pspdat 1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 5.907 14.692 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 2.617 4.181 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2 0.000 0.000 0 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1.80626423934776 0.22824404341771 1.17378968127746 rchrg,fchrg,qchrg pspatm : epsatm= 1.43386982 --- l ekb(1:nproj) --> 0 3.287949 1 1.849886 pspatm: atomic psp has been read and splines computed 2.29419171E+01 ecore*ucvol(ha*bohr**3) -------------------------------------------------------------------------------- _setup2: Arith. and geom. avg. npw (full set) are 284.500 284.488 ================================================================================ iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8611673348304 -8.861E+00 1.404E-03 6.305E+00 ETOT 2 -8.8661434670639 -4.976E-03 8.033E-07 1.677E-01 ETOT 3 -8.8662229341311 -7.947E-05 9.947E-07 3.183E-03 ETOT 4 -8.8662238905499 -9.564E-07 1.695E-08 1.262E-05 ETOT 5 -8.8662238959753 -5.425E-09 2.572E-10 1.890E-08 At SCF step 5, etot is converged : for the second time, diff in etot= 5.425E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -1.90523665E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -1.90523665E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -1.90523665E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.70909837 2 2.00000 1.70909837 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 5.7781E-11; max= 2.5715E-10 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.34675599586155 1.34675599586155 1.34675599586155 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 10.180000000000 10.180000000000 10.180000000000 bohr = 5.387023983446 5.387023983446 5.387023983446 angstroms prteigrs : about to open file tbase3_3o_DS1_EIG Fermi (or HOMO) energy (hartree) = 0.19383 Average Vxc (hartree)= -0.35554 Eigenvalues (hartree) for nkpt= 2 k points: kpt# 1, nband= 5, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord) -0.12169 -0.01539 0.08810 0.13897 0.27407 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 3.06072461520598E+00 Hartree energy = 5.42784245946909E-01 XC energy = -3.54910354481202E+00 Ewald energy = -8.46648022654903E+00 PspCore energy = 8.69853998687012E-02 Loc. psp. energy= -2.41962734691987E+00 NL psp energy= 1.87849296128406E+00 >>>>>>>>> Etotal= -8.86622389597527E+00 Other information on the energy : Total energy(eV)= -2.41262221822088E+02 ; Band energy (Ha)= 2.6934684219E-01 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -1.90523665E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -1.90523665E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -1.90523665E-05 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= 5.6054E-01 GPa] - sigma(1 1)= -5.60539879E-01 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -5.60539879E-01 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= -5.60539879E-01 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 2 ================================================================== - nproc = 1 mkfilename : getwfk/=0, take file _WFK from output of DATASET 1. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.0900000 5.0900000 G(1)= -0.0982318 0.0982318 0.0982318 R(2)= 5.0900000 0.0000000 5.0900000 G(2)= 0.0982318 -0.0982318 0.0982318 R(3)= 5.0900000 5.0900000 0.0000000 G(3)= 0.0982318 0.0982318 -0.0982318 Unit cell volume ucvol= 2.6374446E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.000 => boxcut(ratio)= 2.18216 -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file tbase3_3o_DS1_WFK _setup2: Arith. and geom. avg. npw (full set) are 284.719 284.689 ================================================================================ iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8724785001669 -8.872E+00 4.760E-05 1.236E-02 ETOT 2 -8.8724909244412 -1.242E-05 6.423E-08 7.697E-05 ETOT 3 -8.8724909734851 -4.904E-08 1.848E-08 1.011E-06 ETOT 4 -8.8724909739113 -4.261E-10 4.748E-10 1.144E-08 At SCF step 4, etot is converged : for the second time, diff in etot= 4.261E-10 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.51936443E-06 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.51936443E-06 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.51936443E-06 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.70627464 2 2.00000 1.70627464 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 1.2414E-11; max= 4.7483E-10 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.34675599586155 1.34675599586155 1.34675599586155 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 10.180000000000 10.180000000000 10.180000000000 bohr = 5.387023983446 5.387023983446 5.387023983446 angstroms prteigrs : about to open file tbase3_3o_DS2_EIG Fermi (or HOMO) energy (hartree) = 0.21043 Average Vxc (hartree)= -0.35602 Eigenvalues (hartree) for nkpt= 10 k points: kpt# 1, nband= 5, wtk= 0.09375, kpt= -0.1250 -0.2500 0.0000 (reduced coord) -0.19749 0.10127 0.17126 0.17438 0.29814 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 3.03959673674765E+00 Hartree energy = 5.33348198038133E-01 XC energy = -3.54529841726671E+00 Ewald energy = -8.46648022654903E+00 PspCore energy = 8.69853998687012E-02 Loc. psp. energy= -2.40809116125117E+00 NL psp energy= 1.88744849650115E+00 >>>>>>>>> Etotal= -8.87249097391128E+00 Other information on the energy : Total energy(eV)= -2.41432757685485E+02 ; Band energy (Ha)= 2.5486226737E-01 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.51936443E-06 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.51936443E-06 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.51936443E-06 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= 1.6239E-01 GPa] - sigma(1 1)= -1.62385281E-01 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -1.62385281E-01 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= -1.62385281E-01 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 3 ================================================================== - nproc = 1 mkfilename : getwfk/=0, take file _WFK from output of DATASET 2. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.0900000 5.0900000 G(1)= -0.0982318 0.0982318 0.0982318 R(2)= 5.0900000 0.0000000 5.0900000 G(2)= 0.0982318 -0.0982318 0.0982318 R(3)= 5.0900000 5.0900000 0.0000000 G(3)= 0.0982318 0.0982318 -0.0982318 Unit cell volume ucvol= 2.6374446E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.000 => boxcut(ratio)= 2.18216 -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file tbase3_3o_DS2_WFK _setup2: Arith. and geom. avg. npw (full set) are 284.843 284.810 ================================================================================ iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8725469380575 -8.873E+00 5.156E-03 6.750E-02 ETOT 2 -8.8726013012552 -5.436E-05 1.762E-06 7.610E-04 ETOT 3 -8.8726017372356 -4.360E-07 4.361E-08 1.596E-05 ETOT 4 -8.8726017431743 -5.939E-09 7.556E-09 3.099E-08 At SCF step 4, etot is converged : for the second time, diff in etot= 5.939E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.61311209E-06 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.61311209E-06 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.61311209E-06 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.70622978 2 2.00000 1.70622978 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 1.5208E-10; max= 7.5556E-09 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.34675599586155 1.34675599586155 1.34675599586155 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 10.180000000000 10.180000000000 10.180000000000 bohr = 5.387023983446 5.387023983446 5.387023983446 angstroms prteigrs : about to open file tbase3_3o_DS3_EIG Fermi (or HOMO) energy (hartree) = 0.21592 Average Vxc (hartree)= -0.35603 Eigenvalues (hartree) for nkpt= 28 k points: kpt# 1, nband= 5, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord) -0.21294 0.14951 0.19109 0.19857 0.30452 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 3.03899214470533E+00 Hartree energy = 5.33045719242076E-01 XC energy = -3.54518067080206E+00 Ewald energy = -8.46648022654903E+00 PspCore energy = 8.69853998687012E-02 Loc. psp. energy= -2.40779021252891E+00 NL psp energy= 1.88782610288955E+00 >>>>>>>>> Etotal= -8.87260174317435E+00 Other information on the energy : Total energy(eV)= -2.41435771870422E+02 ; Band energy (Ha)= 2.5447228305E-01 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.61311209E-06 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.61311209E-06 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.61311209E-06 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= 1.6514E-01 GPa] - sigma(1 1)= -1.65143432E-01 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -1.65143432E-01 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= -1.65143432E-01 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 4 ================================================================== - nproc = 1 mkfilename : getwfk/=0, take file _WFK from output of DATASET 3. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.0900000 5.0900000 G(1)= -0.0982318 0.0982318 0.0982318 R(2)= 5.0900000 0.0000000 5.0900000 G(2)= 0.0982318 -0.0982318 0.0982318 R(3)= 5.0900000 5.0900000 0.0000000 G(3)= 0.0982318 0.0982318 -0.0982318 Unit cell volume ucvol= 2.6374446E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.000 => boxcut(ratio)= 2.18216 -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file tbase3_3o_DS3_WFK _setup2: Arith. and geom. avg. npw (full set) are 284.918 284.888 ================================================================================ iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8726055967604 -8.873E+00 4.788E-04 1.638E-05 ETOT 2 -8.8726056404603 -4.370E-08 8.288E-06 9.894E-08 ETOT 3 -8.8726056405192 -5.885E-11 1.960E-06 6.217E-10 At SCF step 3, etot is converged : for the second time, diff in etot= 5.885E-11 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.68250558E-06 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.68250558E-06 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.68250558E-06 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.70623368 2 2.00000 1.70623368 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 1.0844E-08; max= 1.9602E-06 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.34675599586155 1.34675599586155 1.34675599586155 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 10.180000000000 10.180000000000 10.180000000000 bohr = 5.387023983446 5.387023983446 5.387023983446 angstroms prteigrs : about to open file tbase3_3o_DS4_EIG Fermi (or HOMO) energy (hartree) = 0.21820 Average Vxc (hartree)= -0.35603 Eigenvalues (hartree) for nkpt= 60 k points: kpt# 1, nband= 5, wtk= 0.01172, kpt= -0.0625 -0.1250 0.0000 (reduced coord) -0.21840 0.17363 0.20152 0.20810 0.30804 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 3.03896919511891E+00 Hartree energy = 5.33036960432990E-01 XC energy = -3.54517778411031E+00 Ewald energy = -8.46648022654903E+00 PspCore energy = 8.69853998687012E-02 Loc. psp. energy= -2.40779125118049E+00 NL psp energy= 1.88785206590007E+00 >>>>>>>>> Etotal= -8.87260564051916E+00 Other information on the energy : Total energy(eV)= -2.41435877922568E+02 ; Band energy (Ha)= 2.5448117283E-01 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.68250558E-06 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.68250558E-06 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.68250558E-06 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= 1.6719E-01 GPa] - sigma(1 1)= -1.67185058E-01 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -1.67185058E-01 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= -1.67185058E-01 sigma(2 1)= 0.00000000E+00 == END DATASET(S) ============================================================== ================================================================================ -outvars: echo values of variables after computation -------- acell 1.0180000000E+01 1.0180000000E+01 1.0180000000E+01 Bohr amu 2.80855000E+01 diemac 1.20000000E+01 ecut 8.00000000E+00 Hartree etotal1 -8.8662238960E+00 etotal2 -8.8724909739E+00 etotal3 -8.8726017432E+00 etotal4 -8.8726056405E+00 fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 fcart3 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 fcart4 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 - fftalg 312 getwfk -1 jdtset 1 2 3 4 kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.00000000E+00 kpt2 -1.25000000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 1.25000000E-01 -1.25000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 0.00000000E+00 0.00000000E+00 kpt3 -8.33333333E-02 -1.66666667E-01 0.00000000E+00 -8.33333333E-02 -3.33333333E-01 0.00000000E+00 -1.66666667E-01 -2.50000000E-01 0.00000000E+00 -8.33333333E-02 -2.50000000E-01 8.33333333E-02 -8.33333333E-02 5.00000000E-01 0.00000000E+00 -1.66666667E-01 -4.16666667E-01 0.00000000E+00 -8.33333333E-02 -4.16666667E-01 8.33333333E-02 -2.50000000E-01 -3.33333333E-01 0.00000000E+00 -1.66666667E-01 -3.33333333E-01 8.33333333E-02 -8.33333333E-02 -3.33333333E-01 1.66666667E-01 -8.33333333E-02 3.33333333E-01 0.00000000E+00 -1.66666667E-01 4.16666667E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 0.00000000E+00 -1.66666667E-01 5.00000000E-01 8.33333333E-02 -3.33333333E-01 -4.16666667E-01 0.00000000E+00 -2.50000000E-01 -4.16666667E-01 8.33333333E-02 -1.66666667E-01 -4.16666667E-01 1.66666667E-01 -8.33333333E-02 -4.16666667E-01 2.50000000E-01 -8.33333333E-02 1.66666667E-01 0.00000000E+00 -1.66666667E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.33333333E-01 0.00000000E+00 -3.33333333E-01 4.16666667E-01 0.00000000E+00 -4.16666667E-01 5.00000000E-01 0.00000000E+00 -3.33333333E-01 5.00000000E-01 8.33333333E-02 -2.50000000E-01 5.00000000E-01 1.66666667E-01 -8.33333333E-02 0.00000000E+00 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.00000000E+00 -4.16666667E-01 0.00000000E+00 0.00000000E+00 kpt4 -6.25000000E-02 -1.25000000E-01 0.00000000E+00 -6.25000000E-02 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 -1.87500000E-01 0.00000000E+00 -6.25000000E-02 -1.87500000E-01 6.25000000E-02 -6.25000000E-02 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.12500000E-01 0.00000000E+00 -6.25000000E-02 -3.12500000E-01 6.25000000E-02 -1.87500000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 -2.50000000E-01 6.25000000E-02 -6.25000000E-02 -2.50000000E-01 1.25000000E-01 -6.25000000E-02 5.00000000E-01 0.00000000E+00 -1.25000000E-01 -4.37500000E-01 0.00000000E+00 -6.25000000E-02 -4.37500000E-01 6.25000000E-02 -1.87500000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 6.25000000E-02 -6.25000000E-02 -3.75000000E-01 1.25000000E-01 -2.50000000E-01 -3.12500000E-01 0.00000000E+00 -1.87500000E-01 -3.12500000E-01 6.25000000E-02 -1.25000000E-01 -3.12500000E-01 1.25000000E-01 -6.25000000E-02 -3.12500000E-01 1.87500000E-01 -6.25000000E-02 3.75000000E-01 0.00000000E+00 -1.25000000E-01 4.37500000E-01 0.00000000E+00 -1.87500000E-01 5.00000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 6.25000000E-02 -2.50000000E-01 -4.37500000E-01 0.00000000E+00 -1.87500000E-01 -4.37500000E-01 6.25000000E-02 -1.25000000E-01 -4.37500000E-01 1.25000000E-01 -6.25000000E-02 -4.37500000E-01 1.87500000E-01 -3.12500000E-01 -3.75000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 6.25000000E-02 -1.87500000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 -3.75000000E-01 1.87500000E-01 -6.25000000E-02 -3.75000000E-01 2.50000000E-01 -6.25000000E-02 2.50000000E-01 0.00000000E+00 -1.25000000E-01 3.12500000E-01 0.00000000E+00 -1.87500000E-01 3.75000000E-01 0.00000000E+00 -2.50000000E-01 4.37500000E-01 0.00000000E+00 -3.12500000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 6.25000000E-02 -1.87500000E-01 5.00000000E-01 1.25000000E-01 -3.75000000E-01 -4.37500000E-01 0.00000000E+00 -3.12500000E-01 -4.37500000E-01 6.25000000E-02 -2.50000000E-01 -4.37500000E-01 1.25000000E-01 -1.87500000E-01 -4.37500000E-01 1.87500000E-01 -1.25000000E-01 -4.37500000E-01 2.50000000E-01 -6.25000000E-02 -4.37500000E-01 3.12500000E-01 -6.25000000E-02 1.25000000E-01 0.00000000E+00 -1.25000000E-01 1.87500000E-01 0.00000000E+00 -1.87500000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.12500000E-01 0.00000000E+00 outvar_i_n : Printing only first 50 k-points. kptrlatt1 2 -2 2 -2 2 2 -2 -2 2 kptrlatt2 4 -4 4 -4 4 4 -4 -4 4 kptrlatt3 6 -6 6 -6 6 6 -6 -6 6 kptrlatt4 8 -8 8 -8 8 8 -8 -8 8 kptrlen1 2.03600000E+01 kptrlen2 4.07200000E+01 kptrlen3 6.10800000E+01 kptrlen4 8.14400000E+01 P mkmem1 2 P mkmem2 10 P mkmem3 28 P mkmem4 60 natom 2 nband1 5 nband2 5 nband3 5 nband4 5 ndtset 4 ngfft 20 20 20 nkpt1 2 nkpt2 10 nkpt3 28 nkpt4 60 nstep 10 nsym 48 ntypat 1 occ1 2.000000 2.000000 2.000000 2.000000 0.000000 occ2 2.000000 2.000000 2.000000 2.000000 0.000000 occ3 2.000000 2.000000 2.000000 2.000000 0.000000 occ4 2.000000 2.000000 2.000000 2.000000 0.000000 rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01 spgroup 227 strten1 -1.9052366458E-05 -1.9052366458E-05 -1.9052366458E-05 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 strten2 -5.5193644308E-06 -5.5193644308E-06 -5.5193644308E-06 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 strten3 -5.6131120950E-06 -5.6131120950E-06 -5.6131120950E-06 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 strten4 -5.6825055842E-06 -5.6825055842E-06 -5.6825055842E-06 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 -1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0 0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1 0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1 0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0 0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1 0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0 -1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1 0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0 tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 toldfe 1.00000000E-06 Hartree typat 1 1 wtk1 0.75000 0.25000 wtk2 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375 0.09375 0.18750 0.03125 0.03125 wtk3 0.02778 0.02778 0.02778 0.05556 0.02778 0.02778 0.05556 0.02778 0.05556 0.05556 0.02778 0.02778 0.02778 0.05556 0.02778 0.05556 0.05556 0.05556 0.02778 0.02778 0.02778 0.02778 0.02778 0.05556 0.05556 0.00926 0.00926 0.00926 wtk4 0.01172 0.01172 0.01172 0.02344 0.01172 0.01172 0.02344 0.01172 0.02344 0.02344 0.01172 0.01172 0.02344 0.01172 0.02344 0.02344 0.01172 0.02344 0.02344 0.02344 0.01172 0.01172 0.01172 0.02344 0.01172 0.02344 0.02344 0.02344 0.01172 0.02344 0.02344 0.02344 0.02344 0.01172 0.01172 0.01172 0.01172 0.01172 0.02344 0.02344 0.01172 0.02344 0.02344 0.02344 0.02344 0.02344 0.01172 0.01172 0.01172 0.01172 outvars : Printing only first 50 k-points. xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.3467559959E+00 1.3467559959E+00 1.3467559959E+00 xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5450000000E+00 2.5450000000E+00 2.5450000000E+00 xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01 znucl 14.00000 ================================================================================ - Timing analysis has been suppressed with timopt=0 ================================================================================ Suggested references for the acknowledgment of ABINIT usage. The users of ABINIT have little formal obligations with respect to the ABINIT group (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt). However, it is common practice in the scientific literature, to acknowledge the efforts of people that have made the research possible. In this spirit, please find below suggested citations of work written by ABINIT developers, corresponding to implementations inside of ABINIT that you have used in the present run. Note also that it will be of great value to readers of publications presenting these results, to read papers enabling them to understand the theoretical formalism and details of the ABINIT implementation. For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments. - - [1] ABINIT : First-principles approach of materials and nanosystem properties. - X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, - D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi - S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, - M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, - M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger - Computer Phys. Comm. 180, 2582-2615 (2009). - Comment : the third generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/about/ABINIT_CPC_v10.pdf . - The licence allows the authors to put it on the Web. - - [2] A brief introduction to the ABINIT software package. - X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, - M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, - L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan. - Z. Kristallogr. 220, 558-562 (2005). - Comment : the second generic paper describing the ABINIT project. Note that this paper - should be cited especially if you are using the GW part of ABINIT, as several authors - of this part are not in the list of authors of the first or third paper. - The .pdf of the latter paper is available at https://www.abinit.org/about/zfk_0505-06_558-562.pdf. - Note that it should not redistributed (Copyright by Oldenburg Wissenshaftverlag, - the licence allows the authors to put it on the Web). - - And optionally: - - [3] First-principles computation of material properties : the ABINIT software project. - X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, - M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. - Computational Materials Science 25, 478-492 (2002). http://dx.doi.org/10.1016/S0927-0256(02)00325-7 - Comment : the original paper describing the ABINIT project. - - [4] Fast radix 2, 3, 4 and 5 kernels for Fast Fourier Transformations - on computers with overlapping multiply-add instructions. - S. Goedecker, SIAM J. on Scientific Computing 18, 1605 (1997). - - Proc. 0 individual time (sec): cpu= 16.9 wall= 4.8 ================================================================================ Calculation completed. .Delivered 6 WARNINGs and 1 COMMENTs to log file. +Overall time at end (sec) : cpu= 16.9 wall= 4.8
In this output file, you should have a look at the echo of input variables. As you know, these are preprocessed, and, in particular, ngkpt and shiftk are used to generate the list of k-points (kpt) and their weights (wtk). You should read the information about kpt and wtk.
From the output file, here is the evolution of total energy per unit cell:
etotal1 -8.8662238960E+00 etotal2 -8.8724909739E+00 etotal3 -8.8726017432E+00 etotal4 -8.8726056405E+00
The difference between dataset 3 and dataset 4 is rather small. Even the dataset 2 gives an accuracy of about 0.0001 Ha. So, our converged value for the total energy, at fixed acell, fixed ecut, is -8.8726 Ha.
Determination of the lattice parameters¶
The input variable optcell governs the automatic optimisation of cell shape and volume. For the automatic optimisation of cell volume, use:
optcell 1 ionmov 2 ntime 10 dilatmx 1.05 ecutsm 0.5
You should read the indications about dilatmx and ecutsm. Do not test all the k-point grids, only those with nkpt 2 and 10.
The input file $ABI_TUTORIAL/Input/tbase3_4.in is an example,
# Crystalline silicon : computation of the optimal lattice parameter # Convergence with respect to the number of k points. ndtset 2 #Optimization of the lattice parameters optcell 1 ionmov 2 ntime 10 dilatmx 1.05 ecutsm 0.5 #Definition of the k-point grids kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry nshiftk 4 shiftk 0.5 0.5 0.5 # These shifts will be the same for all grids 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 ngkpt1 2 2 2 ngkpt2 4 4 4 #ngkpt3 6 6 6 Not used ! #ngkpt4 8 8 8 getwfk -1 # This is to speed up the calculation, by restarting # from previous wavefunctions, transferred from the old # to the new k-points. #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 8.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_4.out, tolnlines= 0, tolabs= 6.200e-07, tolrel= 1.100e-03, fld_options=-medium #%% psp_files = 14si.pspnc #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon : computation of the optimal lattice parameter #%% Convergence with respect to the number of k points. #%%<END TEST_INFO>
while $ABI_TUTORIAL/Refs/tbase3_4.out is a reference output file.
.Version 8.0.3 of ABINIT .(MPI version, prepared for a x86_64_linux_gnu5.3 computer) .Copyright (C) 1998-2018 ABINIT group . ABINIT comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Mon 4 Apr 2016. - ( at 09h40 ) - input file -> tbase3_4.in - output file -> tbase3_4.out - root for input files -> tbase3_4i - root for output files -> tbase3_4o DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 1. intxc = 0 ionmov = 2 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 2 mpw = 331 nfft = 8000 nkpt = 2 ================================================================================ P This job should need less than 2.926 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.053 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 2. intxc = 0 ionmov = 2 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 10 mpw = 338 nfft = 8000 nkpt = 10 ================================================================================ P This job should need less than 3.173 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.260 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ -------------------------------------------------------------------------------- ------------- Echo of variables that govern the present computation ------------ -------------------------------------------------------------------------------- - - outvars: echo of selected default values - accesswff0 = 0 , fftalg0 =312 , wfoptalg0 = 0 - - outvars: echo of global parameters not present in the input file - max_nthreads = 0 - -outvars: echo values of preprocessed input variables -------- acell 1.0180000000E+01 1.0180000000E+01 1.0180000000E+01 Bohr amu 2.80855000E+01 diemac 1.20000000E+01 dilatmx 1.05000000E+00 ecut 8.00000000E+00 Hartree ecutsm 5.00000000E-01 Hartree - fftalg 312 getwfk -1 ionmov 2 jdtset 1 2 kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.00000000E+00 kpt2 -1.25000000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 1.25000000E-01 -1.25000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 0.00000000E+00 0.00000000E+00 kptrlatt1 2 -2 2 -2 2 2 -2 -2 2 kptrlatt2 4 -4 4 -4 4 4 -4 -4 4 kptrlen1 2.03600000E+01 kptrlen2 4.07200000E+01 P mkmem1 2 P mkmem2 10 natom 2 nband1 5 nband2 5 ndtset 2 ngfft 20 20 20 nkpt1 2 nkpt2 10 nstep 10 nsym 48 ntime 10 ntypat 1 occ1 2.000000 2.000000 2.000000 2.000000 0.000000 occ2 2.000000 2.000000 2.000000 2.000000 0.000000 optcell 1 rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01 spgroup 227 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 -1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0 0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1 0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1 0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0 0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1 0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0 -1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1 0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0 tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 toldfe 1.00000000E-06 Hartree typat 1 1 wtk1 0.75000 0.25000 wtk2 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375 0.09375 0.18750 0.03125 0.03125 xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.3467559959E+00 1.3467559959E+00 1.3467559959E+00 xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5450000000E+00 2.5450000000E+00 2.5450000000E+00 xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01 znucl 14.00000 ================================================================================ chkinp: Checking input parameters for consistency, jdtset= 1. chkinp: Checking input parameters for consistency, jdtset= 2. ================================================================================ == DATASET 1 ================================================================== - nproc = 1 Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.0900000 5.0900000 G(1)= -0.0982318 0.0982318 0.0982318 R(2)= 5.0900000 0.0000000 5.0900000 G(2)= 0.0982318 -0.0982318 0.0982318 R(3)= 5.0900000 5.0900000 0.0000000 G(3)= 0.0982318 0.0982318 -0.0982318 Unit cell volume ucvol= 2.6374446E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.820 => boxcut(ratio)= 2.07825 --- Pseudopotential description ------------------------------------------------ - pspini: atom type 1 psp file is /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/14si.pspnc - pspatm: opening atomic psp file /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/14si.pspnc - Troullier-Martins psp for element Si Thu Oct 27 17:31:21 EDT 1994 - 14.00000 4.00000 940714 znucl, zion, pspdat 1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 5.907 14.692 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 2.617 4.181 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2 0.000 0.000 0 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1.80626423934776 0.22824404341771 1.17378968127746 rchrg,fchrg,qchrg pspatm : epsatm= 1.43386982 --- l ekb(1:nproj) --> 0 3.287949 1 1.849886 pspatm: atomic psp has been read and splines computed 2.29419171E+01 ecore*ucvol(ha*bohr**3) -------------------------------------------------------------------------------- _setup2: Arith. and geom. avg. npw (full set) are 329.750 329.743 ================================================================================ === [ionmov= 2] Broyden-Fletcher-Goldfard-Shanno method (forces) ================================================================================ --- Iteration: ( 1/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8599360124224 -8.860E+00 1.099E-02 6.323E+00 ETOT 2 -8.8658003939157 -5.864E-03 3.192E-07 1.648E-01 ETOT 3 -8.8658786034828 -7.821E-05 1.019E-06 3.165E-03 ETOT 4 -8.8658795593084 -9.558E-07 1.441E-08 1.310E-05 ETOT 5 -8.8658795647852 -5.477E-09 1.346E-10 1.494E-08 At SCF step 5, etot is converged : for the second time, diff in etot= 5.477E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.03560956E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.03560956E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.03560956E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.70861300 2 2.00000 1.70861300 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.54500000000000E+00 2.54500000000000E+00 2.54500000000000E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.01800000000000E+01 1.01800000000000E+01 1.01800000000000E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 0.00000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.63744458000000E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.19834703247905E+00 7.19834703247905E+00 7.19834703247905E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -5.03560955751537E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -5.03560955751537E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -5.03560955751535E-05 Total energy (etotal) [Ha]= -8.86587956478522E+00 --- Iteration: ( 2/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8659281292215 -8.866E+00 1.727E-11 3.491E-03 ETOT 2 -8.8659304750408 -2.346E-06 1.963E-12 1.131E-04 ETOT 3 -8.8659305250203 -4.998E-08 8.023E-10 1.684E-06 ETOT 4 -8.8659305255270 -5.067E-10 8.420E-12 1.864E-09 At SCF step 4, etot is converged : for the second time, diff in etot= 5.067E-10 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.47668822E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.47668822E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -3.47668822E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.71258380 2 2.00000 1.71258380 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.54884468789716E+00 2.54884468789716E+00 2.54884468789716E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.01953787515887E+01 1.01953787515887E+01 1.01953787515887E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.09768937579433E+00 5.09768937579433E+00 5.09768937579433E+00 0.00000000000000E+00 5.09768937579433E+00 5.09768937579433E+00 5.09768937579433E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.64941567334707E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.20922145201357E+00 7.20922145201357E+00 7.20922145201357E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -3.47668821802149E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -3.47668821802148E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -3.47668821802148E-05 Total energy (etotal) [Ha]= -8.86593052552698E+00 Difference of energy with previous step (new-old): Absolute (Ha)=-5.09607E-05 Relative =-5.74795E-06 --- Iteration: ( 3/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8659681828263 -8.866E+00 2.208E-10 1.798E-02 ETOT 2 -8.8659803049991 -1.212E-05 1.013E-11 5.967E-04 ETOT 3 -8.8659805703546 -2.654E-07 4.210E-09 8.893E-06 ETOT 4 -8.8659805730309 -2.676E-09 4.407E-11 9.845E-09 At SCF step 4, etot is converged : for the second time, diff in etot= 2.676E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -2.71735367E-06 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -2.71735367E-06 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -2.71735367E-06 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.72158092 2 2.00000 1.72158092 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.55754606485416E+00 2.55754606485416E+00 2.55754606485416E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.02301842594166E+01 1.02301842594166E+01 1.02301842594166E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.11509212970831E+00 5.11509212970831E+00 5.11509212970831E+00 0.00000000000000E+00 5.11509212970831E+00 5.11509212970831E+00 5.11509212970831E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.67664254472221E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.23383266262137E+00 7.23383266262137E+00 7.23383266262137E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -2.71735367194883E-06 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -2.71735367194861E-06 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -2.71735367194867E-06 Total energy (etotal) [Ha]= -8.86598057303093E+00 Difference of energy with previous step (new-old): Absolute (Ha)=-5.00475E-05 Relative =-5.64491E-06 --- Iteration: ( 4/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8659808025589 -8.866E+00 2.423E-12 1.315E-04 ETOT 2 -8.8659808910814 -8.852E-08 7.453E-14 4.392E-06 ETOT 3 -8.8659808930374 -1.956E-09 3.110E-11 6.490E-08 At SCF step 3, etot is converged : for the second time, diff in etot= 1.956E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 7.36722218E-09 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 7.36722218E-09 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 7.36722218E-09 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.72235228 2 2.00000 1.72235228 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.55829205201090E+00 2.55829205201090E+00 2.55829205201090E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.02331682080436E+01 1.02331682080436E+01 1.02331682080436E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.11658410402179E+00 5.11658410402179E+00 5.11658410402179E+00 0.00000000000000E+00 5.11658410402179E+00 5.11658410402179E+00 5.11658410402179E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.67898540390666E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.23594263293021E+00 7.23594263293021E+00 7.23594263293021E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] 7.36722218240603E-09 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 7.36722218256866E-09 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 7.36722218262287E-09 Total energy (etotal) [Ha]= -8.86598089303741E+00 Difference of energy with previous step (new-old): Absolute (Ha)=-3.20006E-07 Relative =-3.60937E-08 At Broyd/MD step 4, gradients are converged : max grad (force/stress) = 7.3672E-07 < tolmxf= 5.0000E-05 ha/bohr (free atoms) ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 1.2428E-11; max= 3.1096E-11 - nxfh > 0 in outwf is deprecated and will be removed in ABINIT8 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.35378984684111 1.35378984684111 1.35378984684111 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 10.233168208044 10.233168208044 10.233168208044 bohr = 5.415159387364 5.415159387364 5.415159387364 angstroms prteigrs : about to open file tbase3_4o_DS1_EIG Fermi (or HOMO) energy (hartree) = 0.18830 Average Vxc (hartree)= -0.35339 Eigenvalues (hartree) for nkpt= 2 k points: kpt# 1, nband= 5, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord) -0.12511 -0.01968 0.08409 0.13426 0.26874 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 3.03935749041896E+00 Hartree energy = 5.49384003163191E-01 XC energy = -3.53958226875654E+00 Ewald energy = -8.42249115367050E+00 PspCore energy = 8.56365887952526E-02 Loc. psp. energy= -2.45304915449981E+00 NL psp energy= 1.87476360151204E+00 >>>>>>>>> Etotal= -8.86598089303741E+00 Other information on the energy : Total energy(eV)= -2.41255609375867E+02 ; Band energy (Ha)= 2.3561291729E-01 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 7.36722218E-09 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 7.36722218E-09 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 7.36722218E-09 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= -2.1675E-04 GPa] - sigma(1 1)= 2.16751123E-04 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= 2.16751123E-04 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= 2.16751123E-04 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 2 ================================================================== - nproc = 1 mkfilename : getwfk/=0, take file _WFK from output of DATASET 1. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.0900000 5.0900000 G(1)= -0.0982318 0.0982318 0.0982318 R(2)= 5.0900000 0.0000000 5.0900000 G(2)= 0.0982318 -0.0982318 0.0982318 R(3)= 5.0900000 5.0900000 0.0000000 G(3)= 0.0982318 0.0982318 -0.0982318 Unit cell volume ucvol= 2.6374446E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.820 => boxcut(ratio)= 2.07825 -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file tbase3_4o_DS1_WFK _setup2: Arith. and geom. avg. npw (full set) are 330.781 330.766 ================================================================================ === [ionmov= 2] Broyden-Fletcher-Goldfard-Shanno method (forces) ================================================================================ --- Iteration: ( 1/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8720947152938 -8.872E+00 2.415E-04 8.328E-02 ETOT 2 -8.8721613295157 -6.661E-05 1.042E-07 9.563E-04 ETOT 3 -8.8721618805318 -5.510E-07 5.874E-08 1.807E-05 ETOT 4 -8.8721618874529 -6.921E-09 8.184E-10 4.115E-08 At SCF step 4, etot is converged : for the second time, diff in etot= 6.921E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.64209676E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.64209676E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -3.64209676E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.70582070 2 2.00000 1.70582070 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.54500000000000E+00 2.54500000000000E+00 2.54500000000000E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.01800000000000E+01 1.01800000000000E+01 1.01800000000000E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 0.00000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 5.09000000000000E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.63744458000000E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.19834703247905E+00 7.19834703247905E+00 7.19834703247905E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -3.64209675874653E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -3.64209675874653E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -3.64209675874653E-05 Total energy (etotal) [Ha]= -8.87216188745291E+00 --- Iteration: ( 2/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8721871813462 -8.872E+00 1.023E-07 1.797E-03 ETOT 2 -8.8721884286054 -1.247E-06 1.688E-09 5.378E-05 ETOT 3 -8.8721884528952 -2.429E-08 1.341E-09 8.835E-07 ETOT 4 -8.8721884531750 -2.798E-10 4.796E-11 9.796E-10 At SCF step 4, etot is converged : for the second time, diff in etot= 2.798E-10 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -2.50649476E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -2.50649476E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -2.50649476E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.70869820 2 2.00000 1.70869820 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.54778074087530E+00 2.54778074087530E+00 2.54778074087530E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.01911229635012E+01 1.01911229635012E+01 1.01911229635012E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.09556148175061E+00 5.09556148175061E+00 5.09556148175061E+00 0.00000000000000E+00 5.09556148175061E+00 5.09556148175061E+00 5.09556148175061E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.64609927500712E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.20621215539765E+00 7.20621215539765E+00 7.20621215539765E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -2.50649476257418E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -2.50649476257418E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -2.50649476257419E-05 Total energy (etotal) [Ha]= -8.87218845317502E+00 Difference of energy with previous step (new-old): Absolute (Ha)=-2.65657E-05 Relative =-2.99427E-06 --- Iteration: ( 3/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8722067077107 -8.872E+00 1.335E-07 8.978E-03 ETOT 2 -8.8722129537813 -6.246E-06 4.516E-09 2.734E-04 ETOT 3 -8.8722130778575 -1.241E-07 6.759E-09 4.492E-06 ETOT 4 -8.8722130792808 -1.423E-09 2.453E-10 4.997E-09 At SCF step 4, etot is converged : for the second time, diff in etot= 1.423E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -5.14821169E-07 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -5.14821169E-07 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -5.14821169E-07 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.71512111 2 2.00000 1.71512111 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.55398344320273E+00 2.55398344320273E+00 2.55398344320273E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.02159337728109E+01 1.02159337728109E+01 1.02159337728109E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.10796688640545E+00 5.10796688640545E+00 5.10796688640545E+00 0.00000000000000E+00 5.10796688640545E+00 5.10796688640545E+00 5.10796688640545E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.66547255524909E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.22375604690726E+00 7.22375604690726E+00 7.22375604690726E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -5.14821169164366E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -5.14821169164366E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -5.14821169164366E-07 Total energy (etotal) [Ha]= -8.87221307928076E+00 Difference of energy with previous step (new-old): Absolute (Ha)=-2.46261E-05 Relative =-2.77565E-06 --- Iteration: ( 4/10) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8722130873231 -8.872E+00 4.118E-09 3.967E-06 ETOT 2 -8.8722130900775 -2.754E-09 3.764E-11 1.217E-07 ETOT 3 -8.8722130901329 -5.539E-11 4.626E-12 1.981E-09 At SCF step 3, etot is converged : for the second time, diff in etot= 5.539E-11 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -7.16354196E-09 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -7.16354196E-09 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -7.16354196E-09 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.71525709 2 2.00000 1.71525709 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.55411448757275E+00 2.55411448757275E+00 2.55411448757275E+00 Reduced coordinates (xred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00 Reduced forces (fred) 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 Scale of Primitive Cell (acell) [bohr] 1.02164579502910E+01 1.02164579502910E+01 1.02164579502910E+01 Real space primitive translations (rprimd) [bohr] 0.00000000000000E+00 5.10822897514549E+00 5.10822897514549E+00 5.10822897514549E+00 0.00000000000000E+00 5.10822897514549E+00 5.10822897514549E+00 5.10822897514549E+00 0.00000000000000E+00 Unitary Cell Volume (ucvol) [Bohr^3]= 2.66588287086250E+02 Angles (23,13,12)= [degrees] 6.00000000000000E+01 6.00000000000000E+01 6.00000000000000E+01 Lengths [Bohr] 7.22412669635797E+00 7.22412669635797E+00 7.22412669635797E+00 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -7.16354195862308E-09 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -7.16354195856887E-09 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -7.16354195862308E-09 Total energy (etotal) [Ha]= -8.87221309013287E+00 Difference of energy with previous step (new-old): Absolute (Ha)=-1.08521E-08 Relative =-1.22316E-09 At Broyd/MD step 4, gradients are converged : max grad (force/stress) = 7.1635E-07 < tolmxf= 5.0000E-05 ha/bohr (free atoms) ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 4.2470E-13; max= 4.6256E-12 - nxfh > 0 in outwf is deprecated and will be removed in ABINIT8 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.35157917495302 1.35157917495302 1.35157917495302 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 10.216457950291 10.216457950291 10.216457950291 bohr = 5.406316699812 5.406316699812 5.406316699812 angstroms prteigrs : about to open file tbase3_4o_DS2_EIG Fermi (or HOMO) energy (hartree) = 0.20652 Average Vxc (hartree)= -0.35454 Eigenvalues (hartree) for nkpt= 10 k points: kpt# 1, nband= 5, wtk= 0.09375, kpt= -0.1250 -0.2500 0.0000 (reduced coord) -0.19906 0.09755 0.16774 0.17061 0.29409 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 3.02474160682006E+00 Hartree energy = 5.37856135157495E-01 XC energy = -3.53877155677909E+00 Ewald energy = -8.43626716085240E+00 PspCore energy = 8.60574835940237E-02 Loc. psp. energy= -2.43145733216331E+00 NL psp energy= 1.88562773409035E+00 >>>>>>>>> Etotal= -8.87221309013287E+00 Other information on the energy : Total energy(eV)= -2.41425196083322E+02 ; Band energy (Ha)= 2.3181522308E-01 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -7.16354196E-09 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -7.16354196E-09 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -7.16354196E-09 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= 2.1076E-04 GPa] - sigma(1 1)= -2.10758645E-04 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -2.10758645E-04 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= -2.10758645E-04 sigma(2 1)= 0.00000000E+00 == END DATASET(S) ============================================================== ================================================================================ -outvars: echo values of variables after computation -------- acell1 1.0233168208E+01 1.0233168208E+01 1.0233168208E+01 Bohr acell2 1.0216457950E+01 1.0216457950E+01 1.0216457950E+01 Bohr amu 2.80855000E+01 diemac 1.20000000E+01 dilatmx 1.05000000E+00 ecut 8.00000000E+00 Hartree ecutsm 5.00000000E-01 Hartree etotal1 -8.8659808930E+00 etotal2 -8.8722130901E+00 fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 - fftalg 312 getwfk -1 ionmov 2 jdtset 1 2 kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.00000000E+00 kpt2 -1.25000000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 1.25000000E-01 -1.25000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 0.00000000E+00 0.00000000E+00 kptrlatt1 2 -2 2 -2 2 2 -2 -2 2 kptrlatt2 4 -4 4 -4 4 4 -4 -4 4 kptrlen1 2.03600000E+01 kptrlen2 4.07200000E+01 P mkmem1 2 P mkmem2 10 natom 2 nband1 5 nband2 5 ndtset 2 ngfft 20 20 20 nkpt1 2 nkpt2 10 nstep 10 nsym 48 ntime 10 ntypat 1 occ1 2.000000 2.000000 2.000000 2.000000 0.000000 occ2 2.000000 2.000000 2.000000 2.000000 0.000000 optcell 1 rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01 spgroup 227 strten1 7.3672221824E-09 7.3672221826E-09 7.3672221826E-09 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 strten2 -7.1635419586E-09 -7.1635419586E-09 -7.1635419586E-09 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 -1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0 0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1 0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1 0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0 0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1 0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0 -1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1 0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0 tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 toldfe 1.00000000E-06 Hartree typat 1 1 wtk1 0.75000 0.25000 wtk2 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375 0.09375 0.18750 0.03125 0.03125 xangst1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.3537898468E+00 1.3537898468E+00 1.3537898468E+00 xangst2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.3515791750E+00 1.3515791750E+00 1.3515791750E+00 xcart1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5582920520E+00 2.5582920520E+00 2.5582920520E+00 xcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5541144876E+00 2.5541144876E+00 2.5541144876E+00 xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01 znucl 14.00000 ================================================================================ - Timing analysis has been suppressed with timopt=0 ================================================================================ Suggested references for the acknowledgment of ABINIT usage. The users of ABINIT have little formal obligations with respect to the ABINIT group (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt). However, it is common practice in the scientific literature, to acknowledge the efforts of people that have made the research possible. In this spirit, please find below suggested citations of work written by ABINIT developers, corresponding to implementations inside of ABINIT that you have used in the present run. Note also that it will be of great value to readers of publications presenting these results, to read papers enabling them to understand the theoretical formalism and details of the ABINIT implementation. For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments. - - [1] ABINIT : First-principles approach of materials and nanosystem properties. - X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, - D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi - S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, - M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, - M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger - Computer Phys. Comm. 180, 2582-2615 (2009). - Comment : the third generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/about/ABINIT_CPC_v10.pdf . - The licence allows the authors to put it on the Web. - - [2] A brief introduction to the ABINIT software package. - X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, - M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, - L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan. - Z. Kristallogr. 220, 558-562 (2005). - Comment : the second generic paper describing the ABINIT project. Note that this paper - should be cited especially if you are using the GW part of ABINIT, as several authors - of this part are not in the list of authors of the first or third paper. - The .pdf of the latter paper is available at https://www.abinit.org/about/zfk_0505-06_558-562.pdf. - Note that it should not redistributed (Copyright by Oldenburg Wissenshaftverlag, - the licence allows the authors to put it on the Web). - - And optionally: - - [3] First-principles computation of material properties : the ABINIT software project. - X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, - M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. - Computational Materials Science 25, 478-492 (2002). http://dx.doi.org/10.1016/S0927-0256(02)00325-7 - Comment : the original paper describing the ABINIT project. - - [4] Fast radix 2, 3, 4 and 5 kernels for Fast Fourier Transformations - on computers with overlapping multiply-add instructions. - S. Goedecker, SIAM J. on Scientific Computing 18, 1605 (1997). - - Proc. 0 individual time (sec): cpu= 9.9 wall= 3.0 ================================================================================ Calculation completed. .Delivered 2 WARNINGs and 1 COMMENTs to log file. +Overall time at end (sec) : cpu= 9.9 wall= 3.0
You should obtain the following evolution of the lattice parameters:
acell1 1.0233363682E+01 1.0233363682E+01 1.0233363682E+01 Bohr acell2 1.0216447241E+01 1.0216447241E+01 1.0216447241E+01 Bohr
with the following very small residual stresses:
strten1 1.8591719160E-07 1.8591719160E-07 1.8591719160E-07 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 strten2 -2.8279720007E-08 -2.8279720007E-08 -2.8279720007E-08 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
The stress tensor is given in Hartree/Bohr3, and the order of the components is:
11 22 33 23 13 12
There is only a 0.13% relative difference between acell1 and acell2. So, our converged LDA value for Silicon, with the 14si.pspnc pseudopotential (see the tbase3_x.files file) is 10.216 Bohr (actually 10.21644), that is 5.406 Angstrom. The experimental value is 5.431 Angstrom at 25 degree Celsius, see R.W.G. Wyckoff, Crystal structures Ed. Wiley and sons, New-York (1963) or the NIST database.
Computing the band structure¶
We fix the parameters acell to the theoretical value of 3 * 10.216, and we fix also the grid of k-points (the 4x4x4 FCC grid, equivalent to a 8x8x8 Monkhorst-pack grid). We will ask for 8 bands (4 valence and 4 conduction).
A band structure can be computed by solving the Kohn-Sham equation for many different k-points, along different lines of the Brillouin zone. The potential that enters the Kohn-Sham must be derived from a previous self-consistent calculation, and will not vary during the scan of different k-point lines.
Suppose that you want to make a L-Gamma-X-(U-)Gamma circuit, with 10, 12 and 17 divisions for each line (each segment has a different length in reciprocal space, and these divisions give approximately the same distance between points along a line). The circuit will be obtained easily by the following choice of segment end points:
L (1/2 0 0) Gamma (0 0 0) X (0 1/2 1/2) Gamma (1 1 1)
Note:
-
the last Gamma point is in another cell of the reciprocal space than the first one, this choice allows to construct the X-U-Gamma line easily;
-
the k-points are specified using reduced coordinates - in agreement with the input setting of the primitive 2-atom unit cell - in standard textbooks, you will often find the L, Gamma or X point given in coordinates of the conventional 8-atom cell: the above-mentioned circuit is then (½ ½ ½)-(0 0 0)-(1 0 0)-(1 1 1), but such (conventional) coordinates cannot be used with the 2-atom (non-conventional) cell.
So, you should set up in your input file, for the first dataset, a usual SCF calculation in which you output the density (prtden 1), and, for the second dataset:
- fix iscf to -2, to make a non-self-consistent calculation;
- define getden -1, to take the output density of dataset 1;
- set nband to 8;
- set kptopt to -3, to define three segments in the brillouin Zone;
- set ndivk to 10 12 17 (this means a circuit defined by 4 points, with 10 divisions of the first segment, 12 divisions of the second, 17 divisions of the third)
-
set kptbounds to
0.5 0.0 0.0 # L point 0.0 0.0 0.0 # Gamma point 0.0 0.5 0.5 # X point 1.0 1.0 1.0 # Gamma point in another cell.
-
set enunit to 1, in order to have eigenenergies in eV
- the only tolerance criterion admitted for non-self-consistent calculations is tolwfr. You should set it to 1.0d-10 (or so), and suppress toldfe.
The input file $ABI_TUTORIAL/Input/tbase3_5.in is an example,
# Crystalline silicon # # Computation of the band structure. # First, a SCF density computation, then a non-SCF band structure calculation. ndtset 2 #Dataset 1 : usual self-consistent calculation kptopt1 1 # Option for the automatic generation of k points, # taking into account the symmetry nshiftk1 4 shiftk1 0.5 0.5 0.5 # These shifts will be the same for all grids 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 ngkpt1 4 4 4 prtden1 1 # Print the density, for use by dataset 2 toldfe1 1.0d-6 # This value is way too large for most realistic studies of materials #Dataset 2 : the band structure iscf2 -2 getden2 -1 kptopt2 -3 nband2 8 ndivk2 10 12 17 # 10, 12 and 17 divisions of the 3 segments, delimited # by 4 points. kptbounds2 0.5 0.0 0.0 # L point 0.0 0.0 0.0 # Gamma point 0.0 0.5 0.5 # X point 1.0 1.0 1.0 # Gamma point in another cell. tolwfr2 1.0d-12 enunit2 1 # Will output the eigenenergies in eV #Definition of the unit cell acell 3*10.216 # This is equivalent to 10.216 10.216 10.216 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 8.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_5.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% psp_files = 14si.pspnc #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon #%% #%% Computation of the band structure. #%% First, a SCF density computation, then a non-SCF band structure calculation. #%%<END TEST_INFO>
while $ABI_TUTORIAL/Refs/tbase3_5.out is a reference output file.
.Version 8.0.3 of ABINIT .(MPI version, prepared for a x86_64_linux_gnu5.3 computer) .Copyright (C) 1998-2018 ABINIT group . ABINIT comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Mon 4 Apr 2016. - ( at 09h40 ) - input file -> tbase3_5.in - output file -> tbase3_5.out - root for input files -> tbase3_5i - root for output files -> tbase3_5o DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 1. intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 10 mpw = 295 nfft = 8000 nkpt = 10 ================================================================================ P This job should need less than 3.121 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.227 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic) ================================================================================ Values of the parameters that define the memory need for DATASET 2. intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2 lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 8 mffmem = 1 mkmem = 40 mpw = 303 nfft = 8000 nkpt = 40 ================================================================================ P This job should need less than 3.549 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 1.481 Mbytes ; DEN or POT disk file : 0.063 Mbytes. ================================================================================ -------------------------------------------------------------------------------- ------------- Echo of variables that govern the present computation ------------ -------------------------------------------------------------------------------- - - outvars: echo of selected default values - accesswff0 = 0 , fftalg0 =312 , wfoptalg0 = 0 - - outvars: echo of global parameters not present in the input file - max_nthreads = 0 - -outvars: echo values of preprocessed input variables -------- acell 1.0216000000E+01 1.0216000000E+01 1.0216000000E+01 Bohr amu 2.80855000E+01 diemac 1.20000000E+01 ecut 8.00000000E+00 Hartree enunit1 0 enunit2 1 - fftalg 312 getden1 0 getden2 -1 iscf1 7 iscf2 -2 istwfk2 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 jdtset 1 2 kpt1 -1.25000000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 1.25000000E-01 -1.25000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 0.00000000E+00 0.00000000E+00 kpt2 5.00000000E-01 0.00000000E+00 0.00000000E+00 4.50000000E-01 0.00000000E+00 0.00000000E+00 4.00000000E-01 0.00000000E+00 0.00000000E+00 3.50000000E-01 0.00000000E+00 0.00000000E+00 3.00000000E-01 0.00000000E+00 0.00000000E+00 2.50000000E-01 0.00000000E+00 0.00000000E+00 2.00000000E-01 0.00000000E+00 0.00000000E+00 1.50000000E-01 0.00000000E+00 0.00000000E+00 1.00000000E-01 0.00000000E+00 0.00000000E+00 5.00000000E-02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 4.16666667E-02 4.16666667E-02 0.00000000E+00 8.33333333E-02 8.33333333E-02 0.00000000E+00 1.25000000E-01 1.25000000E-01 0.00000000E+00 1.66666667E-01 1.66666667E-01 0.00000000E+00 2.08333333E-01 2.08333333E-01 0.00000000E+00 2.50000000E-01 2.50000000E-01 0.00000000E+00 2.91666667E-01 2.91666667E-01 0.00000000E+00 3.33333333E-01 3.33333333E-01 0.00000000E+00 3.75000000E-01 3.75000000E-01 0.00000000E+00 4.16666667E-01 4.16666667E-01 0.00000000E+00 4.58333333E-01 4.58333333E-01 0.00000000E+00 5.00000000E-01 5.00000000E-01 5.88235294E-02 5.29411765E-01 5.29411765E-01 1.17647059E-01 5.58823529E-01 5.58823529E-01 1.76470588E-01 5.88235294E-01 5.88235294E-01 2.35294118E-01 6.17647059E-01 6.17647059E-01 2.94117647E-01 6.47058824E-01 6.47058824E-01 3.52941176E-01 6.76470588E-01 6.76470588E-01 4.11764706E-01 7.05882353E-01 7.05882353E-01 4.70588235E-01 7.35294118E-01 7.35294118E-01 5.29411765E-01 7.64705882E-01 7.64705882E-01 5.88235294E-01 7.94117647E-01 7.94117647E-01 6.47058824E-01 8.23529412E-01 8.23529412E-01 7.05882353E-01 8.52941176E-01 8.52941176E-01 7.64705882E-01 8.82352941E-01 8.82352941E-01 8.23529412E-01 9.11764706E-01 9.11764706E-01 8.82352941E-01 9.41176471E-01 9.41176471E-01 9.41176471E-01 9.70588235E-01 9.70588235E-01 1.00000000E+00 1.00000000E+00 1.00000000E+00 kptopt1 1 kptopt2 -3 kptrlatt 4 -4 4 -4 4 4 -4 -4 4 kptrlen1 4.08640000E+01 kptrlen2 3.00000000E+01 P mkmem1 10 P mkmem2 40 natom 2 nband1 5 nband2 8 nbdbuf1 0 nbdbuf2 2 ndtset 2 ngfft 20 20 20 nkpt1 10 nkpt2 40 nstep 10 nsym 48 ntypat 1 occ 2.000000 2.000000 2.000000 2.000000 0.000000 rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01 spgroup 227 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 -1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0 0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1 0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1 0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0 0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1 0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0 -1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1 0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0 tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 toldfe1 1.00000000E-06 Hartree toldfe2 0.00000000E+00 Hartree tolwfr1 0.00000000E+00 tolwfr2 1.00000000E-12 typat 1 1 wtk1 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375 0.09375 0.18750 0.03125 0.03125 wtk2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.3515185907E+00 1.3515185907E+00 1.3515185907E+00 xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5540000000E+00 2.5540000000E+00 2.5540000000E+00 xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01 znucl 14.00000 ================================================================================ chkinp: Checking input parameters for consistency, jdtset= 1. chkinp: Checking input parameters for consistency, jdtset= 2. ================================================================================ == DATASET 1 ================================================================== - nproc = 1 Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.1080000 5.1080000 G(1)= -0.0978857 0.0978857 0.0978857 R(2)= 5.1080000 0.0000000 5.1080000 G(2)= 0.0978857 -0.0978857 0.0978857 R(3)= 5.1080000 5.1080000 0.0000000 G(3)= 0.0978857 0.0978857 -0.0978857 Unit cell volume ucvol= 2.6655244E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.000 => boxcut(ratio)= 2.17447 --- Pseudopotential description ------------------------------------------------ - pspini: atom type 1 psp file is /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/14si.pspnc - pspatm: opening atomic psp file /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/14si.pspnc - Troullier-Martins psp for element Si Thu Oct 27 17:31:21 EDT 1994 - 14.00000 4.00000 940714 znucl, zion, pspdat 1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 5.907 14.692 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 2.617 4.181 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2 0.000 0.000 0 2.0872718 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1.80626423934776 0.22824404341771 1.17378968127746 rchrg,fchrg,qchrg pspatm : epsatm= 1.43386982 --- l ekb(1:nproj) --> 0 3.287949 1 1.849886 pspatm: atomic psp has been read and splines computed 2.29419171E+01 ecore*ucvol(ha*bohr**3) -------------------------------------------------------------------------------- _setup2: Arith. and geom. avg. npw (full set) are 289.031 289.009 ================================================================================ iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -8.8670397211174 -8.867E+00 4.789E-03 5.724E+00 ETOT 2 -8.8724810028749 -5.441E-03 2.747E-04 1.581E-01 ETOT 3 -8.8725585064774 -7.750E-05 1.239E-05 2.938E-03 ETOT 4 -8.8725593989852 -8.925E-07 8.043E-07 1.103E-05 ETOT 5 -8.8725594041038 -5.119E-09 2.902E-07 2.947E-08 At SCF step 5, etot is converged : for the second time, diff in etot= 5.119E-09 < toldfe= 1.000E-06 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 2.93016435E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 2.93016435E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 2.93016435E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.71561664 2 2.00000 1.71561664 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 5.9507E-09; max= 2.9021E-07 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.35151859073886 1.35151859073886 1.35151859073886 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000000000000 2 -0.00000000000000 -0.00000000000000 -0.00000000000000 frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 10.216000000000 10.216000000000 10.216000000000 bohr = 5.406074362955 5.406074362955 5.406074362955 angstroms prteigrs : about to open file tbase3_5o_DS1_EIG Fermi (or HOMO) energy (hartree) = 0.20650 Average Vxc (hartree)= -0.35456 Eigenvalues (hartree) for nkpt= 10 k points: kpt# 1, nband= 5, wtk= 0.09375, kpt= -0.1250 -0.2500 0.0000 (reduced coord) -0.19905 0.09756 0.16778 0.17065 0.29404 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 3.02586404019089E+00 Hartree energy = 5.37872698000339E-01 XC energy = -3.53883494296723E+00 Ewald energy = -8.43664533146725E+00 PspCore energy = 8.60690571501039E-02 Loc. psp. energy= -2.42996662280500E+00 NL psp energy= 1.88308169779435E+00 >>>>>>>>> Etotal= -8.87255940410380E+00 Other information on the energy : Total energy(eV)= -2.41434619765721E+02 ; Band energy (Ha)= 2.3182677458E-01 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 2.93016435E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 2.93016435E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 2.93016435E-05 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= -8.6208E-01 GPa] - sigma(1 1)= 8.62083970E-01 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= 8.62083970E-01 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= 8.62083970E-01 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 2 ================================================================== - nproc = 1 mkfilename : getden/=0, take file _DEN from output of DATASET 1. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 0.0000000 5.1080000 5.1080000 G(1)= -0.0978857 0.0978857 0.0978857 R(2)= 5.1080000 0.0000000 5.1080000 G(2)= 0.0978857 -0.0978857 0.0978857 R(3)= 5.1080000 5.1080000 0.0000000 G(3)= 0.0978857 0.0978857 -0.0978857 Unit cell volume ucvol= 2.6655244E+02 bohr^3 Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20 ecut(hartree)= 8.000 => boxcut(ratio)= 2.17447 -------------------------------------------------------------------------------- ================================================================================ prteigrs : about to open file tbase3_5o_DS2_EIG Non-SCF case, kpt 1 ( 0.50000 0.00000 0.00000), residuals and eigenvalues= 2.20E-13 4.63E-13 4.19E-13 1.36E-13 1.83E-13 4.57E-13 4.58E-13 1.92E-12 -1.3921E-01 -4.2582E-02 1.7260E-01 1.7260E-01 2.7150E-01 3.3952E-01 3.3952E-01 4.9454E-01 prteigrs : nnsclo,ikpt= 10 1 max resid (incl. the buffer)= 1.92496E-12 Non-SCF case, kpt 2 ( 0.45000 0.00000 0.00000), residuals and eigenvalues= 1.96E-13 2.10E-13 2.30E-13 3.57E-13 5.74E-13 1.89E-13 5.77E-13 3.86E-10 -1.4434E-01 -3.5196E-02 1.7320E-01 1.7320E-01 2.7220E-01 3.4014E-01 3.4014E-01 4.9572E-01 prteigrs : nnsclo,ikpt= 10 2 max resid (incl. the buffer)= 3.85710E-10 Non-SCF case, kpt 3 ( 0.40000 0.00000 0.00000), residuals and eigenvalues= 1.80E-13 4.37E-13 2.21E-13 2.74E-13 7.93E-13 1.54E-13 8.45E-13 9.51E-08 -1.5634E-01 -1.6314E-02 1.7519E-01 1.7519E-01 2.7446E-01 3.4221E-01 3.4221E-01 4.9896E-01 prteigrs : nnsclo,ikpt= 10 3 max resid (incl. the buffer)= 9.51175E-08 Non-SCF case, kpt 4 ( 0.35000 0.00000 0.00000), residuals and eigenvalues= 5.84E-13 1.23E-13 1.39E-13 2.35E-13 2.11E-13 4.36E-13 2.20E-13 6.19E-06 -1.7052E-01 9.1657E-03 1.7850E-01 1.7850E-01 2.7814E-01 3.4483E-01 3.4483E-01 5.0148E-01 prteigrs : nnsclo,ikpt= 10 4 max resid (incl. the buffer)= 6.19150E-06 Non-SCF case, kpt 5 ( 0.30000 0.00000 0.00000), residuals and eigenvalues= 2.07E-13 3.97E-13 1.94E-13 1.31E-13 9.84E-13 6.28E-13 9.83E-14 7.97E-05 -1.8439E-01 3.8735E-02 1.8310E-01 1.8310E-01 2.8311E-01 3.4661E-01 3.4661E-01 4.9355E-01 prteigrs : nnsclo,ikpt= 10 5 max resid (incl. the buffer)= 7.96730E-05 Non-SCF case, kpt 6 ( 0.25000 0.00000 0.00000), residuals and eigenvalues= 8.36E-13 1.65E-13 5.70E-13 5.38E-13 5.62E-13 1.31E-13 3.36E-13 5.44E-06 -1.9688E-01 7.1048E-02 1.8885E-01 1.8885E-01 2.8937E-01 3.4558E-01 3.4558E-01 4.6709E-01 prteigrs : nnsclo,ikpt= 10 6 max resid (incl. the buffer)= 5.43543E-06 Non-SCF case, kpt 7 ( 0.20000 0.00000 0.00000), residuals and eigenvalues= 4.56E-13 2.88E-13 8.02E-13 1.70E-13 1.06E-13 2.46E-13 1.13E-11 2.41E-08 -2.0742E-01 1.0522E-01 1.9560E-01 1.9560E-01 2.9653E-01 3.4028E-01 3.4028E-01 4.3580E-01 prteigrs : nnsclo,ikpt= 10 7 max resid (incl. the buffer)= 2.41156E-08 Non-SCF case, kpt 8 ( 0.15000 0.00000 0.00000), residuals and eigenvalues= 5.06E-13 1.29E-13 9.34E-13 1.43E-13 5.00E-13 5.06E-13 2.20E-12 3.06E-10 -2.1578E-01 1.4028E-01 2.0290E-01 2.0290E-01 3.0387E-01 3.3133E-01 3.3133E-01 4.0327E-01 prteigrs : nnsclo,ikpt= 10 8 max resid (incl. the buffer)= 3.05754E-10 Non-SCF case, kpt 9 ( 0.10000 0.00000 0.00000), residuals and eigenvalues= 2.32E-13 5.77E-13 1.83E-13 3.49E-13 1.02E-13 5.07E-13 1.99E-13 2.89E-12 -2.2187E-01 1.7453E-01 2.0992E-01 2.0992E-01 3.1009E-01 3.2141E-01 3.2141E-01 3.7166E-01 prteigrs : nnsclo,ikpt= 10 9 max resid (incl. the buffer)= 2.89355E-12 Non-SCF case, kpt 10 ( 0.05000 0.00000 0.00000), residuals and eigenvalues= 2.65E-13 1.53E-13 4.77E-13 4.98E-13 5.34E-13 3.72E-13 1.81E-13 1.12E-13 -2.2552E-01 2.0399E-01 2.1538E-01 2.1538E-01 3.1251E-01 3.1352E-01 3.1352E-01 3.4632E-01 Non-SCF case, kpt 11 ( 0.00000 0.00000 0.00000), residuals and eigenvalues= 3.74E-13 3.52E-13 5.14E-13 3.53E-13 3.34E-13 1.78E-13 7.89E-13 3.15E-13 -2.2675E-01 2.1749E-01 2.1749E-01 2.1749E-01 3.1047E-01 3.1047E-01 3.1047E-01 3.3727E-01 Non-SCF case, kpt 12 ( 0.00000 0.04167 0.04167), residuals and eigenvalues= 6.47E-13 9.52E-13 2.87E-13 4.90E-13 2.48E-13 3.46E-13 3.36E-13 2.23E-13 -2.2561E-01 2.1006E-01 2.1268E-01 2.1268E-01 3.0758E-01 3.1661E-01 3.1661E-01 3.4442E-01 Non-SCF case, kpt 13 ( 0.00000 0.08333 0.08333), residuals and eigenvalues= 5.16E-13 5.60E-13 1.54E-13 2.77E-13 1.85E-13 2.92E-13 9.32E-13 7.83E-12 -2.2222E-01 1.9166E-01 2.0111E-01 2.0111E-01 2.9969E-01 3.3216E-01 3.3216E-01 3.6086E-01 prteigrs : nnsclo,ikpt= 10 13 max resid (incl. the buffer)= 7.83256E-12 Non-SCF case, kpt 14 ( 0.00000 0.12500 0.12500), residuals and eigenvalues= 5.01E-13 1.72E-13 2.62E-13 3.81E-13 9.13E-13 8.43E-13 6.47E-13 4.73E-12 -2.1656E-01 1.6802E-01 1.8694E-01 1.8694E-01 2.8902E-01 3.5315E-01 3.5315E-01 3.7552E-01 prteigrs : nnsclo,ikpt= 10 14 max resid (incl. the buffer)= 4.73161E-12 Non-SCF case, kpt 15 ( 0.00000 0.16667 0.16667), residuals and eigenvalues= 4.23E-13 1.84E-13 1.99E-13 9.85E-13 4.68E-13 7.36E-13 7.84E-13 4.10E-11 -2.0868E-01 1.4205E-01 1.7244E-01 1.7244E-01 2.7731E-01 3.7279E-01 3.7703E-01 3.7703E-01 prteigrs : nnsclo,ikpt= 10 15 max resid (incl. the buffer)= 4.10409E-11 Non-SCF case, kpt 16 ( 0.00000 0.20833 0.20833), residuals and eigenvalues= 1.94E-13 1.20E-13 4.04E-13 1.58E-13 9.09E-13 2.38E-13 4.81E-12 2.17E-10 -1.9861E-01 1.1501E-01 1.5874E-01 1.5874E-01 2.6586E-01 3.5336E-01 4.0262E-01 4.0262E-01 prteigrs : nnsclo,ikpt= 10 16 max resid (incl. the buffer)= 2.17356E-10 Non-SCF case, kpt 17 ( 0.00000 0.25000 0.25000), residuals and eigenvalues= 1.26E-13 9.10E-14 2.39E-13 3.27E-13 1.87E-13 4.33E-13 1.11E-09 2.48E-08 -1.8638E-01 8.7444E-02 1.4634E-01 1.4634E-01 2.5542E-01 3.2960E-01 4.2919E-01 4.2919E-01 prteigrs : nnsclo,ikpt= 10 17 max resid (incl. the buffer)= 2.47961E-08 Non-SCF case, kpt 18 ( 0.00000 0.29167 0.29167), residuals and eigenvalues= 5.97E-13 8.50E-13 2.14E-13 9.46E-13 8.01E-13 9.17E-13 9.71E-10 3.22E-09 -1.7204E-01 5.9756E-02 1.3564E-01 1.3564E-01 2.4681E-01 3.0709E-01 4.5668E-01 4.5668E-01 prteigrs : nnsclo,ikpt= 10 18 max resid (incl. the buffer)= 3.21763E-09 Non-SCF case, kpt 19 ( 0.00000 0.33333 0.33333), residuals and eigenvalues= 2.33E-13 9.94E-13 3.57E-13 3.79E-13 8.30E-13 2.28E-13 4.44E-10 1.51E-09 -1.5569E-01 3.2155E-02 1.2667E-01 1.2667E-01 2.4014E-01 2.8697E-01 4.8472E-01 4.8472E-01 prteigrs : nnsclo,ikpt= 10 19 max resid (incl. the buffer)= 1.51388E-09 Non-SCF case, kpt 20 ( 0.00000 0.37500 0.37500), residuals and eigenvalues= 3.95E-13 2.93E-13 6.12E-13 5.57E-13 7.50E-13 1.87E-13 3.96E-10 6.94E-09 -1.3739E-01 4.9322E-03 1.1968E-01 1.1968E-01 2.3595E-01 2.7030E-01 5.1378E-01 5.1378E-01 prteigrs : nnsclo,ikpt= 10 20 max resid (incl. the buffer)= 6.94412E-09 Non-SCF case, kpt 21 ( 0.00000 0.41667 0.41667), residuals and eigenvalues= 1.50E-13 1.10E-13 1.70E-13 1.45E-13 1.68E-13 2.07E-13 9.54E-10 9.13E-09 -1.1729E-01 -2.1716E-02 1.1459E-01 1.1459E-01 2.3426E-01 2.5664E-01 5.4251E-01 5.4251E-01 prteigrs : nnsclo,ikpt= 10 21 max resid (incl. the buffer)= 9.12604E-09 Non-SCF case, kpt 22 ( 0.00000 0.45833 0.45833), residuals and eigenvalues= 1.80E-13 2.38E-13 3.85E-13 2.17E-13 7.50E-13 5.53E-13 1.36E-08 5.97E-08 -9.5495E-02 -4.7499E-02 1.1151E-01 1.1151E-01 2.3533E-01 2.4636E-01 5.6990E-01 5.6990E-01 prteigrs : nnsclo,ikpt= 10 22 max resid (incl. the buffer)= 5.96643E-08 Non-SCF case, kpt 23 ( 0.00000 0.50000 0.50000), residuals and eigenvalues= 2.80E-13 2.72E-13 7.49E-13 2.43E-13 9.26E-14 1.58E-13 4.18E-08 2.68E-07 -7.2173E-02 -7.2173E-02 1.1046E-01 1.1046E-01 2.3930E-01 2.3930E-01 5.8634E-01 5.8634E-01 prteigrs : nnsclo,ikpt= 10 23 max resid (incl. the buffer)= 2.68421E-07 Non-SCF case, kpt 24 ( 0.05882 0.52941 0.52941), residuals and eigenvalues= 1.61E-13 1.39E-13 2.00E-13 1.26E-13 3.15E-13 2.22E-13 1.65E-06 1.32E-07 -7.2612E-02 -7.0952E-02 1.0308E-01 1.1139E-01 2.4036E-01 2.5040E-01 5.7601E-01 5.7995E-01 prteigrs : nnsclo,ikpt= 10 24 max resid (incl. the buffer)= 1.65215E-06 Non-SCF case, kpt 25 ( 0.11765 0.55882 0.55882), residuals and eigenvalues= 9.10E-13 5.57E-13 9.74E-14 1.01E-13 9.13E-13 8.16E-13 1.27E-06 9.77E-06 -7.4255E-02 -6.7284E-02 8.6792E-02 1.1411E-01 2.4352E-01 2.7817E-01 5.5286E-01 5.6389E-01 prteigrs : nnsclo,ikpt= 10 25 max resid (incl. the buffer)= 9.76784E-06 Non-SCF case, kpt 26 ( 0.17647 0.58824 0.58824), residuals and eigenvalues= 1.04E-13 3.28E-13 6.64E-13 6.90E-13 1.42E-13 2.07E-13 2.70E-05 2.52E-04 -7.7936E-02 -6.1227E-02 6.9959E-02 1.1860E-01 2.4879E-01 3.1484E-01 5.2624E-01 5.4620E-01 prteigrs : nnsclo,ikpt= 10 26 max resid (incl. the buffer)= 2.51890E-04 Non-SCF case, kpt 27 ( 0.23529 0.61765 0.61765), residuals and eigenvalues= 6.22E-13 3.51E-13 6.82E-14 2.21E-13 2.70E-13 1.24E-13 1.92E-06 1.77E-05 -8.4852E-02 -5.2799E-02 5.7390E-02 1.2468E-01 2.5583E-01 3.5646E-01 4.9879E-01 5.2042E-01 prteigrs : nnsclo,ikpt= 10 27 max resid (incl. the buffer)= 1.76636E-05 Non-SCF case, kpt 28 ( 0.29412 0.64706 0.64706), residuals and eigenvalues= 5.25E-13 1.25E-13 2.08E-13 1.41E-13 8.19E-13 7.99E-13 1.81E-07 1.49E-06 -9.5544E-02 -4.1966E-02 5.1371E-02 1.3234E-01 2.6473E-01 4.0119E-01 4.7236E-01 4.9190E-01 prteigrs : nnsclo,ikpt= 10 28 max resid (incl. the buffer)= 1.48634E-06 Non-SCF case, kpt 29 ( 0.35294 0.67647 0.67647), residuals and eigenvalues= 5.73E-13 1.94E-13 8.65E-13 1.16E-13 8.50E-14 7.77E-13 1.06E-11 1.98E-07 -1.0954E-01 -2.8771E-02 5.2021E-02 1.4133E-01 2.7519E-01 4.4196E-01 4.4737E-01 4.7254E-01 prteigrs : nnsclo,ikpt= 10 29 max resid (incl. the buffer)= 1.97672E-07 Non-SCF case, kpt 30 ( 0.41176 0.70588 0.70588), residuals and eigenvalues= 5.12E-13 6.43E-13 1.87E-13 2.27E-13 5.51E-13 7.37E-13 5.00E-10 2.46E-07 -1.2552E-01 -1.3247E-02 5.8390E-02 1.5139E-01 2.8680E-01 4.2416E-01 4.3581E-01 4.6232E-01 prteigrs : nnsclo,ikpt= 10 30 max resid (incl. the buffer)= 2.45612E-07 Non-SCF case, kpt 31 ( 0.47059 0.73529 0.73529), residuals and eigenvalues= 9.58E-13 2.07E-13 9.40E-13 7.04E-13 3.30E-13 7.78E-13 2.04E-11 1.86E-07 -1.4213E-01 4.5665E-03 6.9243E-02 1.6214E-01 2.9895E-01 4.0289E-01 4.1527E-01 4.4663E-01 prteigrs : nnsclo,ikpt= 10 31 max resid (incl. the buffer)= 1.85995E-07 Non-SCF case, kpt 32 ( 0.52941 0.76471 0.76471), residuals and eigenvalues= 2.77E-13 4.24E-13 1.86E-13 1.30E-13 1.72E-13 7.09E-13 7.65E-12 1.04E-09 -1.5834E-01 2.4630E-02 8.3554E-02 1.7307E-01 3.1058E-01 3.8366E-01 3.9554E-01 4.3430E-01 prteigrs : nnsclo,ikpt= 10 32 max resid (incl. the buffer)= 1.03728E-09 Non-SCF case, kpt 33 ( 0.58824 0.79412 0.79412), residuals and eigenvalues= 5.79E-13 9.07E-14 1.09E-13 2.11E-13 6.54E-13 4.81E-13 5.10E-13 4.00E-08 -1.7350E-01 4.6758E-02 1.0053E-01 1.8368E-01 3.2023E-01 3.6661E-01 3.7787E-01 4.2630E-01 prteigrs : nnsclo,ikpt= 10 33 max resid (incl. the buffer)= 4.00324E-08 Non-SCF case, kpt 34 ( 0.64706 0.82353 0.82353), residuals and eigenvalues= 7.26E-13 2.98E-13 9.67E-13 4.52E-13 3.15E-13 6.92E-13 1.68E-12 8.79E-07 -1.8713E-01 7.0981E-02 1.1959E-01 1.9335E-01 3.2628E-01 3.5176E-01 3.6220E-01 4.2307E-01 prteigrs : nnsclo,ikpt= 10 34 max resid (incl. the buffer)= 8.78977E-07 Non-SCF case, kpt 35 ( 0.70588 0.85294 0.85294), residuals and eigenvalues= 8.62E-13 5.15E-13 1.89E-13 4.58E-13 7.61E-13 4.34E-13 7.94E-13 4.49E-07 -1.9897E-01 9.7065E-02 1.4002E-01 2.0154E-01 3.2819E-01 3.3915E-01 3.4849E-01 4.2218E-01 prteigrs : nnsclo,ikpt= 10 35 max resid (incl. the buffer)= 4.49144E-07 Non-SCF case, kpt 36 ( 0.76471 0.88235 0.88235), residuals and eigenvalues= 1.75E-13 1.90E-13 9.88E-13 4.67E-13 2.20E-13 7.95E-13 1.47E-12 8.64E-08 -2.0884E-01 1.2473E-01 1.6101E-01 2.0792E-01 3.2695E-01 3.2881E-01 3.3664E-01 4.1585E-01 prteigrs : nnsclo,ikpt= 10 36 max resid (incl. the buffer)= 8.63862E-08 Non-SCF case, kpt 37 ( 0.82353 0.91176 0.91176), residuals and eigenvalues= 7.81E-13 1.87E-13 4.44E-13 1.59E-13 6.39E-13 3.09E-13 3.89E-13 1.77E-10 -2.1663E-01 1.5339E-01 1.8143E-01 2.1247E-01 3.2083E-01 3.2420E-01 3.2670E-01 3.9614E-01 prteigrs : nnsclo,ikpt= 10 37 max resid (incl. the buffer)= 1.77157E-10 Non-SCF case, kpt 38 ( 0.88235 0.94118 0.94118), residuals and eigenvalues= 7.55E-13 3.85E-13 5.31E-13 2.11E-13 1.59E-13 9.97E-13 8.83E-13 8.38E-12 -2.2224E-01 1.8177E-01 1.9944E-01 2.1539E-01 3.1506E-01 3.1846E-01 3.2043E-01 3.6849E-01 prteigrs : nnsclo,ikpt= 10 38 max resid (incl. the buffer)= 8.37735E-12 Non-SCF case, kpt 39 ( 0.94118 0.97059 0.97059), residuals and eigenvalues= 1.78E-13 3.12E-13 1.84E-13 1.73E-13 5.15E-13 3.91E-13 7.12E-13 9.80E-14 -2.2562E-01 2.0633E-01 2.1254E-01 2.1698E-01 3.1162E-01 3.1270E-01 3.1508E-01 3.4538E-01 Non-SCF case, kpt 40 ( 1.00000 1.00000 1.00000), residuals and eigenvalues= 5.80E-13 3.49E-13 4.56E-13 3.16E-13 3.45E-13 2.86E-13 6.46E-13 2.70E-13 -2.2675E-01 2.1749E-01 2.1749E-01 2.1749E-01 3.1047E-01 3.1047E-01 3.1047E-01 3.3727E-01 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 1.71561664 2 2.00000 1.71561664 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 1.2717E-06; max= 2.5189E-04 reduced coordinates (array xred) for 2 atoms 0.000000000000 0.000000000000 0.000000000000 0.250000000000 0.250000000000 0.250000000000 cartesian coordinates (angstrom) at end: 1 0.00000000000000 0.00000000000000 0.00000000000000 2 1.35151859073886 1.35151859073886 1.35151859073886 length scales= 10.216000000000 10.216000000000 10.216000000000 bohr = 5.406074362955 5.406074362955 5.406074362955 angstroms prteigrs : about to open file tbase3_5o_DS2_EIG Eigenvalues ( eV ) for nkpt= 40 k points: kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.5000 0.0000 0.0000 (reduced coord) -3.78815 -1.15872 4.69668 4.69668 7.38795 9.23867 9.23867 13.45707 kpt# 2, nband= 8, wtk= 1.00000, kpt= 0.4500 0.0000 0.0000 (reduced coord) -3.92759 -0.95774 4.71292 4.71292 7.40692 9.25561 9.25561 13.48927 kpt# 3, nband= 8, wtk= 1.00000, kpt= 0.4000 0.0000 0.0000 (reduced coord) -4.25432 -0.44393 4.76726 4.76726 7.46846 9.31193 9.31193 13.57737 kpt# 4, nband= 8, wtk= 1.00000, kpt= 0.3500 0.0000 0.0000 (reduced coord) -4.64019 0.24941 4.85732 4.85732 7.56855 9.38323 9.38323 13.64601 kpt# 5, nband= 8, wtk= 1.00000, kpt= 0.3000 0.0000 0.0000 (reduced coord) -5.01750 1.05403 4.98228 4.98228 7.70378 9.43164 9.43164 13.43015 kpt# 6, nband= 8, wtk= 1.00000, kpt= 0.2500 0.0000 0.0000 (reduced coord) -5.35724 1.93333 5.13896 5.13896 7.87420 9.40367 9.40367 12.71013 kpt# 7, nband= 8, wtk= 1.00000, kpt= 0.2000 0.0000 0.0000 (reduced coord) -5.64412 2.86325 5.32266 5.32266 8.06903 9.25952 9.25952 11.85861 kpt# 8, nband= 8, wtk= 1.00000, kpt= 0.1500 0.0000 0.0000 (reduced coord) -5.87179 3.81716 5.52127 5.52127 8.26873 9.01587 9.01587 10.97350 kpt# 9, nband= 8, wtk= 1.00000, kpt= 0.1000 0.0000 0.0000 (reduced coord) -6.03730 4.74924 5.71212 5.71212 8.43811 8.74614 8.74614 10.11339 kpt# 10, nband= 8, wtk= 1.00000, kpt= 0.0500 0.0000 0.0000 (reduced coord) -6.13679 5.55083 5.86074 5.86074 8.50374 8.53135 8.53135 9.42391 kpt# 11, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord) -6.17005 5.91814 5.91814 5.91814 8.44836 8.44836 8.44836 9.17755 kpt# 12, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0417 0.0417 (reduced coord) -6.13926 5.71598 5.78736 5.78736 8.36956 8.61532 8.61532 9.37218 kpt# 13, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0833 0.0833 (reduced coord) -6.04694 5.21529 5.47236 5.47236 8.15497 9.03862 9.03862 9.81963 kpt# 14, nband= 8, wtk= 1.00000, kpt= 0.0000 0.1250 0.1250 (reduced coord) -5.89280 4.57202 5.08691 5.08691 7.86474 9.60974 9.60974 10.21839 kpt# 15, nband= 8, wtk= 1.00000, kpt= 0.0000 0.1667 0.1667 (reduced coord) -5.67850 3.86533 4.69239 4.69239 7.54588 10.14425 10.25946 10.25946 kpt# 16, nband= 8, wtk= 1.00000, kpt= 0.0000 0.2083 0.2083 (reduced coord) -5.40439 3.12964 4.31941 4.31941 7.23455 9.61547 10.95596 10.95596 kpt# 17, nband= 8, wtk= 1.00000, kpt= 0.0000 0.2500 0.2500 (reduced coord) -5.07173 2.37947 3.98219 3.98219 6.95039 8.96884 11.67879 11.67879 kpt# 18, nband= 8, wtk= 1.00000, kpt= 0.0000 0.2917 0.2917 (reduced coord) -4.68137 1.62604 3.69083 3.69083 6.71594 8.35640 12.42677 12.42677 kpt# 19, nband= 8, wtk= 1.00000, kpt= 0.0000 0.3333 0.3333 (reduced coord) -4.23651 0.87498 3.44696 3.44696 6.53455 7.80877 13.18988 13.18988 kpt# 20, nband= 8, wtk= 1.00000, kpt= 0.0000 0.3750 0.3750 (reduced coord) -3.73856 0.13421 3.25665 3.25665 6.42050 7.35529 13.98061 13.98061 kpt# 21, nband= 8, wtk= 1.00000, kpt= 0.0000 0.4167 0.4167 (reduced coord) -3.19158 -0.59093 3.11813 3.11813 6.37466 6.98359 14.76234 14.76234 kpt# 22, nband= 8, wtk= 1.00000, kpt= 0.0000 0.4583 0.4583 (reduced coord) -2.59854 -1.29253 3.03427 3.03427 6.40353 6.70380 15.50779 15.50779 kpt# 23, nband= 8, wtk= 1.00000, kpt= 0.0000 0.5000 0.5000 (reduced coord) -1.96393 -1.96393 3.00569 3.00569 6.51173 6.51173 15.95524 15.95524 kpt# 24, nband= 8, wtk= 1.00000, kpt= 0.0588 0.5294 0.5294 (reduced coord) -1.97587 -1.93070 2.80491 3.03120 6.54047 6.81376 15.67399 15.78123 kpt# 25, nband= 8, wtk= 1.00000, kpt= 0.1176 0.5588 0.5588 (reduced coord) -2.02057 -1.83089 2.36174 3.10509 6.62641 7.56932 15.04399 15.34409 kpt# 26, nband= 8, wtk= 1.00000, kpt= 0.1765 0.5882 0.5882 (reduced coord) -2.12074 -1.66607 1.90369 3.22740 6.76983 8.56714 14.31961 14.86294 kpt# 27, nband= 8, wtk= 1.00000, kpt= 0.2353 0.6176 0.6176 (reduced coord) -2.30894 -1.43673 1.56166 3.39280 6.96153 9.69976 13.57269 14.16143 kpt# 28, nband= 8, wtk= 1.00000, kpt= 0.2941 0.6471 0.6471 (reduced coord) -2.59989 -1.14196 1.39788 3.60114 7.20377 10.91685 12.85363 13.38539 kpt# 29, nband= 8, wtk= 1.00000, kpt= 0.3529 0.6765 0.6765 (reduced coord) -2.98071 -0.78291 1.41558 3.84583 7.48822 12.02626 12.17369 12.85839 kpt# 30, nband= 8, wtk= 1.00000, kpt= 0.4118 0.7059 0.7059 (reduced coord) -3.41560 -0.36046 1.58887 4.11946 7.80431 11.54205 11.85896 12.58041 kpt# 31, nband= 8, wtk= 1.00000, kpt= 0.4706 0.7353 0.7353 (reduced coord) -3.86753 0.12426 1.88421 4.41201 8.13497 10.96310 11.30002 12.15337 kpt# 32, nband= 8, wtk= 1.00000, kpt= 0.5294 0.7647 0.7647 (reduced coord) -4.30869 0.67021 2.27361 4.70934 8.45130 10.44003 10.76315 11.81778 kpt# 33, nband= 8, wtk= 1.00000, kpt= 0.5882 0.7941 0.7941 (reduced coord) -4.72125 1.27235 2.73564 4.99805 8.71381 9.97594 10.28238 11.60031 kpt# 34, nband= 8, wtk= 1.00000, kpt= 0.6471 0.8235 0.8235 (reduced coord) -5.09205 1.93149 3.25414 5.26127 8.87852 9.57190 9.85590 11.51241 kpt# 35, nband= 8, wtk= 1.00000, kpt= 0.7059 0.8529 0.8529 (reduced coord) -5.41416 2.64126 3.81022 5.48411 8.93064 9.22877 9.48303 11.48818 kpt# 36, nband= 8, wtk= 1.00000, kpt= 0.7647 0.8824 0.8824 (reduced coord) -5.68284 3.39399 4.38130 5.65789 8.89677 8.94730 9.16044 11.31588 kpt# 37, nband= 8, wtk= 1.00000, kpt= 0.8235 0.9118 0.9118 (reduced coord) -5.89469 4.17400 4.93685 5.78160 8.73026 8.82185 8.88989 10.77952 kpt# 38, nband= 8, wtk= 1.00000, kpt= 0.8824 0.9412 0.9412 (reduced coord) -6.04741 4.94622 5.42716 5.86108 8.57334 8.66561 8.71928 10.02710 kpt# 39, nband= 8, wtk= 1.00000, kpt= 0.9412 0.9706 0.9706 (reduced coord) -6.13938 5.61439 5.78355 5.90436 8.47948 8.50891 8.57389 9.39830 kpt# 40, nband= 8, wtk= 1.00000, kpt= 1.0000 1.0000 1.0000 (reduced coord) -6.17005 5.91814 5.91814 5.91814 8.44836 8.44836 8.44836 9.17755 == END DATASET(S) ============================================================== ================================================================================ -outvars: echo values of variables after computation -------- acell 1.0216000000E+01 1.0216000000E+01 1.0216000000E+01 Bohr amu 2.80855000E+01 diemac 1.20000000E+01 ecut 8.00000000E+00 Hartree enunit1 0 enunit2 1 etotal1 -8.8725594041E+00 fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00 - fftalg 312 getden1 0 getden2 -1 iscf1 7 iscf2 -2 istwfk2 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 jdtset 1 2 kpt1 -1.25000000E-01 -2.50000000E-01 0.00000000E+00 -1.25000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 -1.25000000E-01 -3.75000000E-01 1.25000000E-01 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -2.50000000E-01 5.00000000E-01 1.25000000E-01 -1.25000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 0.00000000E+00 0.00000000E+00 kpt2 5.00000000E-01 0.00000000E+00 0.00000000E+00 4.50000000E-01 0.00000000E+00 0.00000000E+00 4.00000000E-01 0.00000000E+00 0.00000000E+00 3.50000000E-01 0.00000000E+00 0.00000000E+00 3.00000000E-01 0.00000000E+00 0.00000000E+00 2.50000000E-01 0.00000000E+00 0.00000000E+00 2.00000000E-01 0.00000000E+00 0.00000000E+00 1.50000000E-01 0.00000000E+00 0.00000000E+00 1.00000000E-01 0.00000000E+00 0.00000000E+00 5.00000000E-02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 4.16666667E-02 4.16666667E-02 0.00000000E+00 8.33333333E-02 8.33333333E-02 0.00000000E+00 1.25000000E-01 1.25000000E-01 0.00000000E+00 1.66666667E-01 1.66666667E-01 0.00000000E+00 2.08333333E-01 2.08333333E-01 0.00000000E+00 2.50000000E-01 2.50000000E-01 0.00000000E+00 2.91666667E-01 2.91666667E-01 0.00000000E+00 3.33333333E-01 3.33333333E-01 0.00000000E+00 3.75000000E-01 3.75000000E-01 0.00000000E+00 4.16666667E-01 4.16666667E-01 0.00000000E+00 4.58333333E-01 4.58333333E-01 0.00000000E+00 5.00000000E-01 5.00000000E-01 5.88235294E-02 5.29411765E-01 5.29411765E-01 1.17647059E-01 5.58823529E-01 5.58823529E-01 1.76470588E-01 5.88235294E-01 5.88235294E-01 2.35294118E-01 6.17647059E-01 6.17647059E-01 2.94117647E-01 6.47058824E-01 6.47058824E-01 3.52941176E-01 6.76470588E-01 6.76470588E-01 4.11764706E-01 7.05882353E-01 7.05882353E-01 4.70588235E-01 7.35294118E-01 7.35294118E-01 5.29411765E-01 7.64705882E-01 7.64705882E-01 5.88235294E-01 7.94117647E-01 7.94117647E-01 6.47058824E-01 8.23529412E-01 8.23529412E-01 7.05882353E-01 8.52941176E-01 8.52941176E-01 7.64705882E-01 8.82352941E-01 8.82352941E-01 8.23529412E-01 9.11764706E-01 9.11764706E-01 8.82352941E-01 9.41176471E-01 9.41176471E-01 9.41176471E-01 9.70588235E-01 9.70588235E-01 1.00000000E+00 1.00000000E+00 1.00000000E+00 kptopt1 1 kptopt2 -3 kptrlatt 4 -4 4 -4 4 4 -4 -4 4 kptrlen1 4.08640000E+01 kptrlen2 3.00000000E+01 P mkmem1 10 P mkmem2 40 natom 2 nband1 5 nband2 8 nbdbuf1 0 nbdbuf2 2 ndtset 2 ngfft 20 20 20 nkpt1 10 nkpt2 40 nstep 10 nsym 48 ntypat 1 occ 2.000000 2.000000 2.000000 2.000000 0.000000 rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01 0.0000000000E+00 shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01 spgroup 227 strten1 2.9301643500E-05 2.9301643500E-05 2.9301643500E-05 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 -1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0 0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1 0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1 0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0 0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1 0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0 -1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1 0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0 tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000 toldfe1 1.00000000E-06 Hartree toldfe2 0.00000000E+00 Hartree tolwfr1 0.00000000E+00 tolwfr2 1.00000000E-12 typat 1 1 wtk1 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375 0.09375 0.18750 0.03125 0.03125 wtk2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.3515185907E+00 1.3515185907E+00 1.3515185907E+00 xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5540000000E+00 2.5540000000E+00 2.5540000000E+00 xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01 znucl 14.00000 ================================================================================ - Timing analysis has been suppressed with timopt=0 ================================================================================ Suggested references for the acknowledgment of ABINIT usage. The users of ABINIT have little formal obligations with respect to the ABINIT group (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt). However, it is common practice in the scientific literature, to acknowledge the efforts of people that have made the research possible. In this spirit, please find below suggested citations of work written by ABINIT developers, corresponding to implementations inside of ABINIT that you have used in the present run. Note also that it will be of great value to readers of publications presenting these results, to read papers enabling them to understand the theoretical formalism and details of the ABINIT implementation. For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments. - - [1] ABINIT : First-principles approach of materials and nanosystem properties. - X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, - D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi - S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, - M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, - M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger - Computer Phys. Comm. 180, 2582-2615 (2009). - Comment : the third generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/about/ABINIT_CPC_v10.pdf . - The licence allows the authors to put it on the Web. - - [2] A brief introduction to the ABINIT software package. - X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, - M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, - L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan. - Z. Kristallogr. 220, 558-562 (2005). - Comment : the second generic paper describing the ABINIT project. Note that this paper - should be cited especially if you are using the GW part of ABINIT, as several authors - of this part are not in the list of authors of the first or third paper. - The .pdf of the latter paper is available at https://www.abinit.org/about/zfk_0505-06_558-562.pdf. - Note that it should not redistributed (Copyright by Oldenburg Wissenshaftverlag, - the licence allows the authors to put it on the Web). - - And optionally: - - [3] First-principles computation of material properties : the ABINIT software project. - X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, - M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. - Computational Materials Science 25, 478-492 (2002). http://dx.doi.org/10.1016/S0927-0256(02)00325-7 - Comment : the original paper describing the ABINIT project. - - [4] Fast radix 2, 3, 4 and 5 kernels for Fast Fourier Transformations - on computers with overlapping multiply-add instructions. - S. Goedecker, SIAM J. on Scientific Computing 18, 1605 (1997). - - Proc. 0 individual time (sec): cpu= 19.0 wall= 3.3 ================================================================================ Calculation completed. .Delivered 0 WARNINGs and 1 COMMENTs to log file. +Overall time at end (sec) : cpu= 19.0 wall= 3.3
You should find the band structure starting at (second dataset):
Eigenvalues ( eV ) for nkpt= 40 k points: kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.5000 0.0000 0.0000 (reduced coord) -3.78815 -1.15872 4.69668 4.69668 7.38795 9.23867 9.23867 13.45707 kpt# 2, nband= 8, wtk= 1.00000, kpt= 0.4500 0.0000 0.0000 (reduced coord) -3.92759 -0.95774 4.71292 4.71292 7.40692 9.25561 9.25561 13.48927 kpt# 3, nband= 8, wtk= 1.00000, kpt= 0.4000 0.0000 0.0000 (reduced coord) -4.25432 -0.44393 4.76726 4.76726 7.46846 9.31193 9.31193 13.57737 kpt# 4, nband= 8, wtk= 1.00000, kpt= 0.3500 0.0000 0.0000 (reduced coord) -4.64019 0.24941 4.85732 4.85732 7.56855 9.38323 9.38323 13.64601 ....
One needs a graphical tool to represent all these data. In a separate file (_EIG), you will find the list of k-points and the eigenenergies (the input variable prteig is set by default to 1).
Even without a graphical tool we will have a quick look at the values at L, \Gamma, X and \Gamma again:
kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.5000 0.0000 0.0000 (reduced coord) -3.78815 -1.15872 4.69668 4.69668 7.38795 9.23867 9.23867 13.45707 kpt# 11, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord) -6.17005 5.91814 5.91814 5.91814 8.44836 8.44836 8.44836 9.17755 kpt# 23, nband= 8, wtk= 1.00000, kpt= 0.0000 0.5000 0.5000 (reduced coord) -1.96393 -1.96393 3.00569 3.00569 6.51173 6.51173 15.95524 15.95524 kpt# 40, nband= 8, wtk= 1.00000, kpt= 1.0000 1.0000 1.0000 (reduced coord) -6.17005 5.91814 5.91814 5.91814 8.44836 8.44836 8.44836 9.17755
The last \Gamma is exactly equivalent to the first \Gamma. It can be checked that the top of the valence band is obtained at \Gamma (=5.91814 eV). The width of the valence band is 12.09 eV, the lowest unoccupied state at X is 0.594 eV higher than the top of the valence band, at \Gamma.
The Si is described as an indirect band gap material (this is correct), with a band-gap of about 0.594 eV (this is quantitatively quite wrong: the experimental value 1.17 eV is at 25 degree Celsius). The minimum of the conduction band is even slightly displaced with respect to X, see kpt # 21. This underestimation of the band gap is well-known (the famous DFT band-gap problem). In order to obtain correct band gaps, you need to go beyond the Kohn-Sham Density Functional Theory: use the GW approximation. This is described in the first tutorial on GW.
For experimental data and band structure representation, see the book by M.L. Cohen and J.R. Chelikowski [Cohen1988].
Important
There is a subtlety that is worth to comment about. In non-self-consistent calculations, like those performed in the present band structure calculation, with iscf = -2, not all bands are converged within the tolerance tolwfr. Indeed, the two upper bands (by default) have not been taken into account to apply this convergence criterion: they constitute a buffer. The number of such buffer bands is governed by the input variable nbdbuf.
It can happen that the highest (or two highest) band(s), if not separated by a gap from non-treated bands, can exhibit a very slow convergence rate. This buffer allows achieving convergence of important, non-buffer bands. In the present case, 6 bands have been converged with a residual better than tolwfr, while the two upper bands are less converged (still sufficiently for graphical representation of the band structure). In order to achieve the same convergence for all 8 bands, it is advised to use nband=10 (that is, 8 + 2).
Using AbiPy to automate the most boring steps¶
The AbiPy package provides several tools to facilitate the preparation of band structure calculations
and the analysis of the output results. First of all, one can use the abistruct script with
the kpath
command to determine a high-symmetry k-path from any file containing structural
information (abinit input file, netcdf output files etc.).
The high-symmetry k-path follows the conventions described in [Setyawan2010].
Let’s try with:
abistruct.py kpath tbase3_5.in # Abinit Structure natom 2 ntypat 1 typat 1 1 znucl 14 xred 0.0000000000 0.0000000000 0.0000000000 0.2500000000 0.2500000000 0.2500000000 acell 1.0 1.0 1.0 rprim 0.0000000000 5.1080000000 5.1080000000 5.1080000000 0.0000000000 5.1080000000 5.1080000000 5.1080000000 0.0000000000 # K-path in reduced coordinates: # tolwfr 1e-20 iscf -2 getden ?? ndivsm 10 kptopt -11 kptbounds +0.00000 +0.00000 +0.00000 # $\Gamma$ +0.50000 +0.00000 +0.50000 # X +0.50000 +0.25000 +0.75000 # W +0.37500 +0.37500 +0.75000 # K +0.00000 +0.00000 +0.00000 # $\Gamma$ +0.50000 +0.50000 +0.50000 # L +0.62500 +0.25000 +0.62500 # U +0.50000 +0.25000 +0.75000 # W +0.50000 +0.50000 +0.50000 # L +0.37500 +0.37500 +0.75000 # K +0.62500 +0.25000 +0.62500 # U +0.50000 +0.00000 +0.50000 # X
To visualize the band structure stored in the GSR.nc file, use the abiopen script and the command line:
abiopen.py tbase3_5o_DS2_GSR.nc --expose -sns=talk
It is also possible to compare multiple GSR files with the abicomp script and the syntax
abicomp.py gsr tbase3_5o_DS1_GSR.nc tbase3_5o_DS2_GSR.nc -e -sns=talk
to produce the following figures:
For further details about the AbiPy API and the GSR file, please consult the GsrFile notebook .